

黒澤さんからのメール

- ミッション2013
 - ・ 衝突計算の有用性と限界
 - ・計算者の心得、陥りやすい問題
 - 目的:コードをブラックボックス化しないで自分で走らせる
 - 過去のT. J. AHRENSとの経験など(注しかないので)
- ミッション2014
 - ・ 衝突計算の歴史
 - ・衝突計算を行う際の考え方
 - どこまで現象を再現しようと考えているのか
 - 20-30分程度

衝突シミュレーションの有用性

実験では

数値シミュレーションでは

- 時間・空間・エネルギーの限界 → 天体・銀河スケールまで
- 観測・調査では
 - 初期条件が不明
 - 複雑なプロセス
 - 少ないサンプル数
- → 初期条件→結果の評価
- → 単純化·複合化·素過程の解明
 - → 計算機能力に依存
- ・実験・観測・調査で可能な範囲 →計算コードの/による検証 実験・観測・調査で不可能な範囲→計算コードによる予測

衝撃波数値計算の歴史

- マンハッタン計画(WWⅡ) 原爆開発 パンチカードシステム
- 1950~1960年代:軍事目的
 - 差分法:人口粘性
 - ・ ローレンスリバモア研究所(LLNL)
 - ロスアラモス研究所(LANL)
- ・1970~1980年代:目的の多様化
 - 原子力分野·工学·構造物·天文分野
- 1990年代~:機能特化•可視化
 - 流体・連続体・不連続体への対応
 - コンピュータグラフィクス

- 1952 IBM SYSTEM700 ~
- 1964 IBM SYSTEM/360
- 1976 CRAY1ベクトル型計算機 (H,F,N)

1989 GRAPE 1993 CRAYT3D 並列型スカラー計算機

2000~ グリッド コンピューティング

衝撃波数値計算の進化

- マンハッタン計画(WWⅡ) 原爆開発
- 1950~1960年代:軍事目的
 - 差分法:人口粘性
 - ・ ローレンスリバモア研究所(LLNL)
 - ロスアラモス研究所(LANL)
- ・1970~1980年代:目的の多様化
 - 原子力分野·工学·構造物·天文分野
- 1990年代~:機能特化•可視化
 - 流体・連続体・不連続体への対応
 - コンピュータグラフィクス

衝突コードの発展

数値計算の進化とクレーター計算

Simple crater transient crater

Complex crater (Melo

(Melosh,1989より)

Hydrodynamics 数値シミュレーションコード

物体の運動を再現する:保存則

- ・保存則
- 質量保存 $\frac{d\rho}{dt} = -\rho \nabla \cdot \vec{v}$
- 運動量保存 $\rho \frac{dv_{\alpha}}{dt} = -\frac{\partial \sigma_{\alpha\beta}}{\partial x_{\beta}}$
- ・エネルギー保存

$$\rho \frac{du}{dt} = -\sigma \nabla \cdot \vec{v}$$

- + 力学項 (例:重力·熱放射···/人工粘性項)
- ・物質モデル $\rho \vec{v} \sigma: P u$
- ・(保存則+物質モデル) → 時間差分を解く

▶ 物体の運動を再現する:運動の表記法

- ・ オイラー (EULER)法
 - 格子は空間に固定
 - 近隣格子間で物質が移動
 - 物質境界、自由表面、履歴が扱いにくい
 - 気体・流体に対して適用
 - 大変形に最適
- ・ ラグランジュ (LAGRANGE)法
 - 物質とともに格子が移動・変形
 - 物質境界、自由表面、履歴が扱いやすい
 - 固体に適用性
 - 格子法は大変形に不適
 - 粒子法は大変形に対応

◎ 物体の運動を再現する:運動の表記法

・ ALE (ARBITRARY LAGRANGIAN-EULERIAN)法

• ラグランジュ法で物質の移動と別に格子を任意に移動

• SPH (SMOOTHED PARTICLE HYDRODYNAMICS)法

- ・ メッシュレス解法の一種
- ・ 粒子:連続的な密度分布。
- 大変形を伴う解析事例に適用
- DEM
 - メッシュレス解法の一種、要素間の関係がバネ定数等で定義

コード名	運動方程式	解法	応用例	開発元	引用文献
ZEUS	Eulerian	FDM	astronomy	Livermore→Illinois	Norman,2000
GEODYN	Eulerian	FVM	explosion	Livermore	Lomov et al., 2003
CSQ	Eulerian– Lagrangian	FDM	explosion	Sandia	Thompson,1979
СТН	Eulerian	FVM	explosion	Sandia	MacGlaun et al., 1990
SOVA	Eulerian	FVM	explosion	(Shuvalov, Russia)	Shuvalov,1999
SALE	Lagrangian⁄ Eulerian	FDM	any flow	Los Alamos	Amsden et al., 1980
SAGE	Eulerian	FVM ?	any	Los Alamos	Weaver & Gittings 2003
DEM	Lagrangian	DEM	Geomaterial	(Cundall)	Cundall, 1971
SPH	Lagrangian	РМ	astronomy	(Lucy et al, U.K.)	Gingold & Monaghan 1977

•解適合格子法(AMR) •並列化•高速化 FDM 有限差分法 FVM 有限体積法 PM 粒子法 DEM 個別要素法

数値計算の進化とクレーター計算

Simple crater transient crater

Complex crater (Melo

(Melosh,1989より)

物質のモデル化

SPH 弹塑性 Von-Mises降伏条件

規格化パラメータYs/pv²= 5.×10⁻³ gR/v² = 3.×10⁻² Ys/pgd_p= 0.17R/d_p

熱緩和 (THERMAL SOFTENING) モデル

- O'KEEFE AND AHRENS, 1993, 1999
- CTH (EULERIAN-LAGRANGIAN)
- MIE-GRUNEISEN EOS
- (1993) VON MISES降伏条件モデル+温度依存• →YE:準強度~数MPA
- (1999)MOHR-COULOMB破壊基準モデル
 - 圧力(静水圧)
 - + 温度(衝撃加熱) + 密度(塑性変形、間隙)依存
 →YE:準強度~数MPA
- COMPLEX CRATER 形成条件: Y/PGD_P<0.15
- クレーター底の上昇
- 中心振動は表層より上に到達
- 中心丘の崩壊で形成された表面波の伝播
- 強度と均衡地点に到達
- 中心部で地層は隆起
- その周囲で90度回転

断層 (FAULTING)モデル

No bulking

o

0

-20

ρ

10

- O' KEEFE AND AHRENS, 1999, 2003, O' KEEFE ET AL., 2001
- ・ JOHNSON AND HOLMQUISTモデル
 - 強度に損傷(D)導入 Y=Y_o(P,T,P)(1-D)

10

10

20

- · Dの変化率大の領域で断層形成
- ミゼス:D=0→流体化、地形形成不可
- モールクーロン:中央丘形成
 - 中心付近の地形の上昇
 - 断層の角度の変化

- 計算目的に適合したモデル化
 - ・ 保存則のモデル化
 - 物理項
 - ・ 物質のモデル化
 - 物質モデル
 - パラメータ設定
 - 実験との整合性
 - 計算手法(ソルバー)

数値計算上の留意点-2

• 座標系

- 2次元軸対称 XYZ⇔RΘZ
 - 中心軸の扱い
 - 衝突現象では物理量の変化最大
 - Z→Rの不自然な運動
 - XYZ⇔RΘZ(応力場・破壊表現?)
 - 軸周囲の精度確保
 - 結果の評価:3D・実験と比較
- ・ 境界の取り扱い
 - 自由境界
 - 周期境界
 - 影響が無視できる遠方に設定

数値計算上の留意点-3

- 計算精度とパフォーマンス
 - 計算機力(時間・メモリ・CPU)
 - 空間(メッシュ)
 - AMR(格子サイズ可変)
 - 時間(ΔT)
 - 人工粘性
 - 高速化計算スキーム・アルゴリズム
 - 計算範囲(時間・空間スケール)
 - ・保存則と誤差
 - 3D

10

- 惑星規模へ
- ・ CGの誘惑

まとめ

- ・衝突計算の今後
 - ・より長く、広く、複雑な現象の再現
 - •形態•層構造•T/P変化•物性•••
 - 計算機の能力の向上
 - ・物質モデルの複雑化 → 本質は?
 - ・モデル・パラメータの広がり
 - 適応モデル・パラメータの妥当性
 - 実験データの重要性
 - ・天体形成・表層進化・惑星規模へ