惑星科学的衝突過程における

物質強度・空隙モデル と 数値シミュレーションと実験の関わり

神戸大・理 中村昭子

- 1. 強度・空隙モデルが適用される問題
- 2. 強度モデル、空隙モデル
- 3. 数値シミュレーションと実験の関わり

(Melosh, 1989)

小惑星帯の衝突進化とクレーター年代

O'Brien, Greenberg, and Richardson, 2006

- Gaspra (S, 19x12x11 km)
- Ida (S, 56x24x21 km)
- Mathilde (C, 66x48x44 km) > 4Gyr
- Eros (S, 34x11x11 km)

Michel, O'Brien, and Hirata, 2008 **Itokawa (S**, 0.45x0.29x0.21 km) 200 Myr <, < 2 Gyr **Eros**

Lutetia, Vesta, ...

スケーリング則や数値シミュレーションにより 推定された衝突破壊のしきい値(Q*)

(Holsapple et al., 2002)

2. 強度モデル、空隙モデル

連続体

粉粒体

流体

References: Holsapple, K. A., 2009.

On the "strength" of the small bodies of the solar system: A review of strength theories and their implementation for analyses of impact disruptions.

+ iSALE manual + ,,,

岩石強度・空隙モデルの入った 数値シミュレーション

- Dynamic fragmentation in impacts Hydrocode simulation of laboratory impacts, Melosh, Ryan, and Asphaug, 1992. SALE + G-K モデル
- Impact simulations with fracture.I-Method and tests, Benz and Asphaug, 1994. G-K モデ ル+SPH
- -> Catastrophic disruptions revisited, Benz and Asphaug, 1999. Q* (解像度に難あり、後にBenz自身がCD6(2003)かCD7(2007)で言及)
- Modeling damage and deformation in impact simulations, Collins, Melosh, and Ivanov, 2004. SALE + Collins damage model

"more comprehensive model (than the model in '92)" by Holsapple (2009)

- A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets, Wunnenmann, Collins, and Melosh, 2006. ε-α model
- Numerical simulations of impacts involving porous bodies, Jutzi, Benz, and Michel, 2008.
 P-α model

粉粒体のせん断強度

剪断強度測定器 概略図

(Aoki, 2014)

砂岩の三軸圧縮試験結果

(Holsapple, 2009)

強度

それを超えると、変形が元に戻らない応力 $f(\sigma) = C.$ 応力の不変量 J₁, J₂, J₃を用いて, $f(J_1, J_2, J_3) = f(P, J_2) = C.$ $J_1 = \sigma_1 + \sigma_2 + \sigma_3 = -3P$ $J_2 = \frac{1}{6} \left((\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right)$

iSALEの物質パラメタ (material.inp)

MATNAME Material name	: mygrani		
EOSNAME EOS name	: granite		
EOSTYPE EOS type	: aneos		
STRMOD Strength model	: ROCK		
DAMMOD Damage model	: COLLINS		
ACFL Acoustic fluidisation	: BLOCK		
PORMOD Porosity model	: NONE		
THSOFT Thermal softening	: OHNAKA		
LDWEAK Low density weakening	: POLY		
POIS pois	: 3.D-01		
TMELT0 tmelt0	: 1.673D+03		
CHEAT C_heat	: 1.D+03		
TFRAC tfrac	: 1.2D+00		
ASIMON a_simon	: 6.D+09		
CSIMON c_simon	: 3.D+00		
YDAM0 ydam0 (ycoh)	: 1.D+04		
FRICDAM fricdam	: 8. D-0 1		
YLIMDAM ylimdam	: 2.D+09		
YINTO yint0	: 1.D+07		
FRICINT fricint	: 1.1D+00		
YLIMINT ylimint	: 2.5D+09		
BDTPRES bdt_pres	: -1.D+00		
BPTPRES bpt_pres	:-1.D+00		
GAMETA gam_eta	: 8.D-03		
GAMBETA gam_beta	: 1.15D+02		

強度、ダメージ、空隙率

強度モデル(STRMOD)

<u>ROCK</u> Pressure- and damage-dependent strength model for rock-like materials.

DRPR Drucker-Prager: Linear pressure-dependent strength model for granular materials.

LUNDI Lundborg intact: Non-linear pressure-dependent strength model for intact rock.

LUNDD Lundborg damaged: Non-linear pressure-dependent strength model for damaged rock.

VNMS Von Mises: Constant yield-strength model for ductile materials.

JNCK Johnson and Cook: Strain and strain-rate dependent strength model for metals.

LIQU Liquid: Newtonian fluid model

HYDRO Hydrodynamic: Inviscid fluid model

DRPR Drucker-Prager: Linear pressure-dependent strength model for granular materials.

$$Y = min(Y_0 + \mu p, Y_m)$$

		I. 27
Constant	Input parameter	Description
Yo	YDAM0	Cohesion (yield strength at zero pressure)
μ	FRICDAM	Coefficient of internal friction for material
Ym	YLIMDAM	Limiting strength at high pressure

LUIND Lundborg intact: Non-linear pressure-dependent strength model for intact rock.

$$Y=Y_0+rac{\mu p}{1+rac{\mu p}{Y_m-Y_0}}$$

Constant	Input parameter	Description
Y_0	YINT0	Cohesion (yield strength at zero pressure)
μ	FRICINT	Coefficient of internal friction for material
Ym	YLIMINT	Limiting strength at high pressure

ROCK Pressure- and damage-dependent strength model for rock-like materials.

 $Y = Y_d D + Y_i (1. - D)$

D: damage parameter, *D*=0: intact, *D*=1: fully-damaged

$$Y_d = min(Y_{d0} + \mu_d p, Y_{dm})$$

 $Y_i = Y_{i0} + rac{\mu_i p}{1 + rac{\mu_i p}{Y_{im} - Y_{i0}}}$

Constant	Input parameter	Description
Yi0	YINT0	Cohesion of intact material
μ_i	FRICINT	Coefficient of internal friction for intact material
Yim	YLIMINT	Limiting strength at high pressure for intact material
Y_{d0}	YDAM0	Cohesion of damaged material
μd	FRICDAM	Coefficient of internal friction for damaged material
Ydm	YLIMDAM	Limiting strength at high pressure for damaged material

(Collins, 2004)

ダメージモデル(DAMMOD)

COLLINS Combined shear and tensile failure model with brittle, semi-brittle and ductile shear failure regimes.

IVANOV Shear failure model with pressure-dependent failure strain.

<u>SIMPLE</u> Shear failure model with constant failure strain.

NONE No damage model; material remains intact.

SIMPLE Shear failure model with constant failure strain.

$$D = \min\left(\frac{\epsilon_p}{\epsilon_f}, 1\right)$$

 ϵ_p TPS - Total plastic strain (shear)

Constant	Input parameter	Description
ϵ_{f}	FAILSTRN	Constant plastic strain at failure

空隙モデル

軽石

(Nakamura et al., 2009)

"distension (膨張パラメタ)" α を使って 1つの連続体で表す

$$\alpha = 物質の真密度 \rho_s / バルク密度 \rho$$

$$P = f(\rho, E, \alpha) = \frac{1}{\alpha} P_s(\alpha \rho, E) = \frac{1}{\alpha} P_s(\rho_s, E)$$

熱力学的説明 see Holsapple (2008)

P-α モデル (Hermann, 1969)

 $\alpha = \rho_s / \rho = F(P)$

多孔質物質の圧密曲線

head speed=0.06mm/min

Hiraoka and Nakamura, 2007 (@CD8)

(Wünnemann et al, 2006)

Note that the behaviour of the original model can be regained by choosing $\chi = 1$.

Constant	Input parameter	Description
α_0	ALPHA0	Initial distension of porous material (1/(1-porosity))
€e0	EPSE0	Elastic volumetric strain threshold (-ve in compression)
α_{x}	ALPHAX	Distension at transtion from exponential to power-law compaction
κ	KAPPA	Compaction rate parameter in exponential compaction regime
χ	CHI	Ratio of porous to solid material sound speed at zero pressure

3. 数値シミュレーションと実験の関わり

Dynamic fragmentation in impacts - Hydrocode simulation of laboratory impacts, Melosh, <u>Ryan</u>, and Asphaug, 1992. SALE + G-K

- Impact simulations with fracture.I-Method and tests, Benz and Asphaug, 1994. G-K + SPH
 ref. Nakamura and Fujiwara, 1991; Nakamura 1993
- Weibull parameters of Yakuno basalt targets used in documented high-velocity impact experiments, Nakamura, Michel, and Setoh, 2007. G-KのWeuibull 定数
- Numerical simulations of impacts involving porous bodies, Jutzi, Benz, and Michel, 2008. *P-α model*

Numerical simulations of impacts involving porous bodies II. Comparison with laboratory experiments, Jutzi, Michel, Hiraoka, Nakamura, Benz, 2009.

玄武岩へのナイロン球衝突

衝突から10、20、30、40 μsの等ダメージ線と 粒子速度ベクトル (Benz and Aphaug, 1994)

衝突から100 µs (Nakamura and Fujiwara, 1991; Nakamura, 1993)

Benz and Asphaug 1994数値シミュレーションと 実験との比較

Weibullパラメタ (m,k) の値

TABLE 1. Weibull dynamic fracture coefficients for various rocks.

Material	Reference	m	k (cm-3)	ln(k)/m
Basalt*	Melosh et al. (1992)	9.5	1.0×10^{27}	6.54
Basalt*	Benz and Asphaug (1995)	9.0	4.0×10^{29}	7.17
Basalt [†]	Lindholm et al. (1974)	9.5	1.59×10^{30}	7.32
Granite [†]	Grady and Lipkin (1980)	6.2	4.14×10^{17}	6.54
Water Ice*,†,‡	Benz and Asphaug (1999)	9.6	1.4×10^{32}	7.71
30% Sand + Water Ice [†]	Stewart et al. (1999)	9.57	1.34×10^{30}	7.25
Concrete [†]	Grady and Lipkin (1980)	5.3	5.27×10^{12}	5.53
Oil Shale [†]	Grady and Kipp (1980)	8.1	1.70×10^{21}	6.04
Limestone [†]	Grady and Lipkin (1980)	57.0	4.26×10^{167}	6.77

* Determined from simulation fits to laboratory data. The two-dimensional axisymmetric simulations of *Melosh et al.* (1992) require stronger fracture parameters than the nonsymmetric three-dimensional simulations of *Benz and Asphaug* (1995) for the same impact experiment.

[†] Determined experimentally through measurements of tensile strength vs. strain rate.

* Earlier published values of m = 8.7, k = 3.2 × 10³⁸ (Lange and Ahrens, 1983) were later corrected to similar values [m = 9.57, k = 1.28 × 10³² (Stewart et al., 1999)].

Weibull (1939)分布

応力σ以下で成長し始めるひびの数密度を

$$n(\sigma) = k \sigma^m$$

とすると、ランダムに選んだ体積Vの中に、応力 σ以下で成長し始めるひびを含む確率は、

$$1 - exp[-(\sigma / \sigma_{min})^m]$$

ただし、

ターゲットサイズ効果

(Housen and Holsapple, 1999)

標的/弾丸比を固定して速度も(ほぼ)一定で系の大きさだけ変化させた衝突実験

大きいものほど壊れやすい、細かく壊れる

Grady-Kippの破壊モデル (1980)

・ 脆性物質は、内在するひび(のもと)が成長して、引張りで壊れる。

 $n(\sigma) = k \sigma^m$

- ひびは、一定速度Cgで時間とともに成長する。
- ひびの空間密度により定義されるdamage "D", σ_D = σ(1 D)

Weibull (1939) の手法による

直径10 mm、厚み5 mm の 円板 20 個の圧裂引張強度測定

<u>G-Kモデルを採用した数値計算</u>破壊された部分が流体として振る舞う

- ⇒ Shear が重要なクレーター形成過程のシミュレーションには向かない (Holsapple)
 - 引張破壊が支配的な Disruption向け

(Jutzi et al., 2009)

シミュレーションと実験の共同研究への道

1. 出会い・タイミング
 2. 少なくとも片方に強い熱意・わくわく感
 3. 互いの言語を理解しようとする姿勢

