球対球衝突における iSALE試用雑感

鈴木絢子，黒澤耕介

不規則な形状の面にできたクレーター

○小天体上の例
－Phobos，Ida，イトカワ．．．
○実験室では
－曲率のある面（主に円柱）へのクレーター形成
（Fujiwara et al．，1993；2014）
－曲率大と共に，体積，直径，深さが拡大
－球面のクレーター形成
（Suzuki et al．，2015，JpGU）
－曲率大と共に，スポールゾー ン大のため体積•直径が拡大。深さは一定

目的

○曲率があることによって，衝突クレーター形成時 の内部圧力分布などにどのような違いがあるかを数値流体コード iSALEを用いて調べる。

iSALE計算条件

- 計算条件
- 二次元円柱座標系
- 空間解像度 0.08 mm／grid
- 重力 なし
- 衝突天体
- 直径 3.2 mm （40 grid）
- 速度 3.4 km／s
－EOS：ダナイトのANEOS［Johnson et al．，2015］
- 空隙 なし，初期温度分布 一様293K
- 標的：
- ダナイト球，直径 7.8 cm （ 974 grid ）
- ダナイト平面（円柱，直径 9.0 cm ）
－EOS：ダナイトのANEOS［Johnson et al．，2015］
－空隙 なし，初期温度分布 一様293K

asteroid．inp：曲面の場合

asteroid．inp：平面の場合

3 a u a 1	GRIDH GRIDV GRIDSPC CYL	horizontal cells vertical cells grid spacing cylind．geometry	$\begin{array}{ll} : & 8 \\ \vdots & 8 \\ : & 0.08 D-3 \\ : & 1.000 \end{array}$	$\begin{aligned} & : 600 \\ & : 1280 \end{aligned}$	
	\qquad Global setup parameters S＿TYPE setup type ：DEFALLT				
	GRAD＿TYPE PR TRACE	surface teng grodient type Collision trocers 45	$45 \mathrm{~mm} / 0.08 \mathrm{~mm}=562.5$		
，	CUL＿SIIE OBJMLM OBJRESH OBJRESV OBJVEL OBJMAT OBJTYPE OBJOFF＿V LAYMM	cell no＿or＿irpoct Projectile（＂Object＂）Paraneters number of objects CPPR horizontal CPPR vertical object velocity object material object type proj offset（ver） Target Paraneters layers number	$\begin{aligned} & : 1134 \\ & : 2 \\ & \vdots 20 \\ & \vdots 20 \\ & \vdots-3.403 \\ & \vdots \text { proj } \\ & \vdots \\ & : 2 \end{aligned}$		
	DT DTMAX TEND DTSAVE	initial time increment $: 1.20-8$ maximum timestep $\vdots 1.00-4$ end time $: 7.20-6$ save interval $: 1.20-7$			
	BND＿L $B N D_{2} R$ $B N D_{2} B$ $B N D_{2} T$	left right botton top	$\begin{aligned} & \text { : FREESLIP } \\ & \vdots \text { NOSLIP } \\ & \text { : NOSLIP } \\ & \text { OUTFLOW } \end{aligned}$		
$\stackrel{\square}{0}$	AVIS AVIS2	art．visc．linear art．visc．guad． Trocer Particle Pinamet	$\begin{array}{r} : 0.2400 \\ 1.200 \\ \hline \end{array}$		
＂	TR SAVE tr＿qual TR＿SPCH TR＿SPCV TR＿VAR	Option for saving quality tracer spacing X tracer spacing Y odd．tracer fiels	$\begin{array}{lc} \vdots 1 & \\ \vdots & 1 \\ \vdots & -1.00 \\ \vdots & -1.00 \\ \vdots & -2.00 \\ \text { iTrP-TrT-Trp-Trt-TrA-TrV-TrN } \end{array}$		
n 4 u u u	STRESS ROCUTOFF TENSILE VEL CUT	Consider stress \vdots Density cutoff $\vdots 1.00-2$ Tensile failure $\vdots 8$ velocity cutoff $:-2.0$			

material．inp

Johnson，et al．，2015 と同じ条件

結果：平面の場合

最大到達圧力の分布

曲面の場合（極座標表示）

まとめ
－曲率があると，内部の最高到達圧力分布が異な る。自由表面からの距離が異なるため。
－曲率のあり／なしの違いで，もう少し適切な表現方法はないか。

