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天体衝突の研究	


•  実験　  ・・・   天体スケールへの拡張がネック	
  
•  数値実験 ・・・ 広い温度・圧力範囲での精密な	
  

　　　　　　　　　　EOSが必要	
  
　　　　　　　　　　（液相・気相の研究は進んでいない）	
  

	
  
→Melosh(2007)では、熱力学的特性のよく研究さ
れているSiO2に、既存プログラムの改良を適用し
て数値計算で極限状態での挙動を記述	
  
	
  



状態方程式(EOS)とは？	


•  物質を記述する熱力学的変数の関係	
  
•  たいていP(ρ,T)の形で与えられる	
  
•  すべての物質、その状態は固有のEOSをもつ	
  
•  現実の物質は複雑で、第一法則からEOSを予

測できない	
  
→実験に基づいて決定	
  
　実験データに反経験的fiMngで外挿	
  
ただし、主に理想的で	
  ”clear”	
  な物質で発展	
  
地質物質についての理解は遅れている	
  



EOSはなぜ重要か	


•  EOSは、実験室・より大きなスケールの衝突・爆発の
数値計算モデルに使われる	
  
(→T,	
  P,	
  vの予測)	
  

•  衝突過程の数値シミュレーションに使う理論は2大柱	
  
１　Newtonの運動方程式	
  
２　状態方程式	
  

	
  
	
  

衝突現象の理解には地質物質のEOSが不可欠	
  
Melosh(2007)では、SiO2のEOSを求める	


将来は玄武岩や水氷に利用したい	
  



状態方程式(EOS)数値計算プログラムANEOS	


金属を対象に開発された。	
  
　−気相・・・単原子の混合物として扱う	
  
　−原子間力・・・Morseポテンシャルを仮定	
  
	
  
SiO2などの地質物質には不適切。　	
  
→　改良	
  
　−気相・・・分子を含むとする	
  
　−原子間力・・・Mieポテンシャル	
  



•  空間を	
  ”vertex”	
  で	
  ”cell”	
  に分ける	
  
•  変数　：　cellの中心で定義　・・・　P,	
  E,	
  ρ	
  
　　　　　　　	
  vertexで定義　　　  ・・・　x(位置),	
  v,	
  m	
  
•  初期値　：　E,	
  ρ,	
  v,	
  x	
  を与える　→	
  P(E,ρ)	
  を計算	
  
•  VertexについてのEOM	
  (a=F/m)	
  

→　v’,	
  x’　→　ρ’	
  →	
  W=Fx	
  から	
  E’	
  →　P’	
  
最終状態まで繰り返し計算	
  

ANEOSの計算手法	


A hydrocode equation of state for SiO2 2081

melted, or just heated, is important to the environmental
effects of past and future impacts on the Earth or other
planets. Shocked-damaged minerals and quenched metastable
high-pressure phases such as coesite and stishovite are often
used as diagnostic indicators of impact events, but their role in
the impact process requires knowledge of how, when, and
where they formed. The thermodynamic properties of any
substance, such as SiO2, are summarized by its EOS. The goal
of this paper is to determine a reasonably accurate equation of
state of SiO2 that is valid over the entire range of conditions
that are likely to be important in an impact event. The major
reason for constructing this relationship is because it plays a
vital role in numerical modeling of impact events.

WHAT IS AN EQUATION OF STATE
AND WHY IS IT IMPORTANT?

A thermodynamic EOS is a functional relation that links
the thermodynamic variables describing a substance. Most
thermodynamics texts present the EOS as a relation linking
the pressure P, temperature T, and density 7 (or its inverse,
specific volume V = 1/7) in the form P(7, T). Each substance
and each state of a substance has its own unique EOS. Real
materials are so complex that it is not, in general, possible to
predict their equations of state from first principles: they must
be determined empirically, by measurement. Nevertheless, a
great deal of effort has been expended on approximating the
EOSs of real substances and in using semi-empirical fits to
extrapolate the measured data (e.g., Anderson 1995). EOS
studies form a large portion of the effort of many physicists,
geophysicists, and petrologists. However, most physicists are
interested in ideal, or especially “clean” materials
(specifically, not silicates or ices), and geophysicists and
petrologists are mostly interested in solids, or, at most,
partially molten materials. Only recently have high-speed
impacts brought the importance of the solid/liquid/vapor
transitions of silicates into prominence.

The most pressing need for better EOSs for geologic
materials comes from the use of computer codes called
“hydrocodes” (the name is mainly historical, referring to the
fact that the first such codes treated materials as strengthless
fluids. Modern “hydro”codes incorporate a variety of
sophisticated material strength models and the name is no
longer an apt description). These codes, which have been
constructed over many years, are currently used to model the
effects of impacts and explosions both at the laboratory scale
and at scales much larger than possible in laboratory
simulations (e.g., the Moon-forming impact). The use of such
codes permits prediction of the changes in temperature,
pressure, and velocity of materials involved in an impact.

The numerical simulation of impact processes rests on
two fundamental pillars. One pillar is Newton’s laws of
motion (no solar-system impact process requires
consideration of relativistic velocities!). Hydrocodes
implement these equations in various ways, depending on
whether the code is Eulerian, Lagrangian, or one of the newer
smooth particle hydrodynamics (SPH) versions, but this has
become a well-understood part of impact simulations
(Anderson 1987).

The other basic pillar is the EOS, relating the pressure P
to density 7 and internal energy E of each computational cell
or region, or P(E, 7). This differs from the usual textbook
relation P(7, T) because the mechanical part of the code
computation most readily determines E, not T. Although this
structure is a bit non-standard, there is a close connection
between the two representations and it is usually possible to
translate from one to another, depending on the particular
computational method used.

Figure 3 illustrates the essentials of a hydrocode
computation. For simplicity I have chosen a one-dimensional
model (most modern codes work in three dimensions) and for
definiteness I have illustrated a Lagrangian type of
computation, in which material remains in the same cell
throughout the computation. The region to be simulated is

Fig. 3. Schematic illustration of a one-dimensional Lagrangian hydrocode computation. A single cell of this computation at an initial time t is
shaded on the left half of the figure. The cell is bounded by two vertices shown as heavy dots. Position x, velocity v, and mass m are defined
at each vertex. Cell-centered quantities are pressure P, internal energy E, and density 7. The code advances from time t to t + t by using
Newton’s laws of motion to compute the acceleration of the vertices and hence the new velocity, cell volume , density, and internal
energy, after which the solution cycle begins again, each time using the EOS to relate the new pressure to density and internal energy.
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seconds for dinosaur-killer asteroids 15 km in diameter. In
laboratory experiments, these conditions are maintained for
even briefer intervals, measured in microseconds or less,
which presents one of the challenges in relating experimental
studies to natural impacts.

Shock compression is a highly irreversible
thermodynamic process (Melosh 1989). The narrow shock
front that traverses both projectile and target conserves mass,
energy and momentum, but it does not conserve entropy.
Processes such as crushing, unreversed phase
transformations, friction, thermal conduction, and radiation
all act to deposit heat irreversibly in the compressed material.
The results of shock compression experiments are frequently
summarized by the Hugoniot curve, which is the locus of the
final states achieved after a shock wave has compressed the
initial material. Whether plotted as a function of pressure and
volume or the equivalent (through the Hugoniot equations)
particle velocity and shock velocity, the Hugoniot curve does
not represent a thermodynamic path, but simply the ensemble
of final states of a suite of shock compression events.

Once the shock compression event ends, rarefaction
waves from surrounding regions of low pressure propagate
into the compressed region and lower its pressure to ambient
conditions. This decompression is generally adiabatic and, to
a good approximation, isentropic. The series of pressures and
temperatures passed through on decompression can be
represented as a thermodynamic path on the traditional P-V or
P-T diagrams. As Fig. 2 illustrates, however, this path can be
very complex for a real substance such as SiO2, in which the
high-pressure coesite-stishovite phase transition or the liquid-
vapor transition can greatly complicate the release curve. For
this reason, a much better representation is a plot using the
unfamiliar coordinates of pressure and entropy on a P-S
diagram. To my knowledge, the first people to use such plots
were Kieffer and Delany (1979), in the context of volcanic
venting, a process that also approximates the isentropic
expansion of a complex mixture of substances. Once the

Hugoniot curve is drawn on a P-S diagram, along with the
phase boundaries of the substance it represents, the release
isentropes are simply vertical lines, and the course of
expansion subsequent to shock compression is easily
followed. Figure 7 illustrates this type of diagram for SiO2.

Knowledge of the thermodynamic cycle describing
shock compression and release is important for a number of
reasons. Understanding the aftermath of an impact, which
includes an inventory of how much material was vaporized,

Fig. 1. The phase diagram of SiO2 as currently known (data from Presnall 1995). The left diagram is plotted in conventional form with linear
pressure and temperature axes. The right contains the same data, but uses a logarithmic pressure axis that expands the low-pressure region and
permits the liquid/vapor phase curve and critical point to be shown on the same plot (but with a higher temperature limit). The ANEOS
computation from which this phase curve is derived is described later in this paper.

Fig. 2. Thermodynamic paths of the adiabatic release of shocked SiO2
from high pressure on a log P versus T diagram. The Hugoniot curve,
indicating the final result of increasingly strong shock compression
of quartz, is shown as a heavy line, while the thin solid lines are
decompression isentropes. The phase curve separating liquid and
solid phases is shown as a heavy line and the critical point by a heavy
dot. The numbers labeling the release adiabats are the particle
velocities in the shocked material in km/s. These velocities can be
interpreted as the outcome of an impact experiment between identical
materials at twice the particle velocity. Thus, the curve labeled 7 is
the release isentrope of a face-on impact between two quartz plates at
14 km/s. This isentrope approximately separates states that
decompress first to a liquid that boils when it reaches the phase curve,
from those so strongly shocked that they decompress as a vapor that
then condense when the isentrope reaches the phase curve. The gray
rectangle encompasses the entire pressure and temperature range in
Fig. 1a.

断熱減圧時のSiO2の熱力学的経路。	
  
細線は等エントロピー線で、数字は物質の粒子速度。	
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to 0.3, and accepted a critical density of 650 kg/m3, close to
the estimates of all methods of evaluating the critical point
parameters. The result, listed in Table 1, agrees reasonably
well with that computed from ANEOS. 

This method does not make any implicit assumptions
about the position of the critical point and guarantees that the
critical point lies on the extrapolation of the phase curve. It
thus seems superior to the previous rules of thumb used to
estimate the critical parameters, as well as to the Young and
Adler (1971) hard-sphere model that was, after all,
constructed for metals, not oxides, and seems to fail badly for
SiO2 (the authors also note that it fails badly for some metals
as well).

Note that the initial results from ANEOS did not yield a
critical ratio near 0.3, even for an assumed molecular weight
of 40. However, an adjustment of the shape of the cold-
compression curve, described below, succeeded in adjusting
the critical parameters such to yield a critical ratio nearly
equal to 0.3. Although the Morse potential computation
reported there does give a critical ratio near 0.3 without any
adjustments, the vapor curve on the P-S plot in Fig. 7 is
clearly pathological, having a shape that approaches a double-
peaked curve, which would give an unrealistic multiple
critical point.

THE ANEOS EQUATION OF STATE

The ANEOS equation of state was developed at Sandia
National Laboratories, principally by Sam Thomson, between
about 1970 and 1990 (Thompson 1973, 1990; Thompson and
Lauson 1972a, 1972b). The name ANEOS emphasizes that it
is based on a series of ANalytic approximations to various
terms in the EOS. ANEOS grew out of what was originally a

tabular EOS that had analytic extensions to regions of density
and temperature not covered by the tables (Thompson and
Lauson 1972a). In later work (Thompson and Lauson 1972b),
Thompson evidently decided that the difficulties of locating
phase boundaries in a purely tabular EOS were so severe that
an approach using analytic functions throughout offered
many advantages in constructing a thermodynamically
consistent EOS.

The basic approach in ANEOS is to start with an analytic
expression for the Helmholtz free energy, F(7, T). Because
each hydrocode time cycle begins with freshly computed
values of density 7and internal energy E, this is not precisely
the form most useful for hydrocode computations. However,
a simple Newtonian iteration of the temperature T to find a
target value of the internal energy E is typically very quick
and reliable because the computation itself determines the
slope dE/dT (equal to the heat capacity CV) at constant
density. The heat capacity is invariably positive and non-zero,
so the iteration almost never fails. As a bonus, this method
also returns the temperature, which is not readily accessible
from many widely used hydrocode EOS, such as the Tillotson
equation (Tillotson 1962) or a Mie-Gruneisen EOS (Zharkov
and Kalinin 1971).

The Helmholtz free energy F is the most natural
thermodynamic potential to use in impact computations
because temperature T and density 7 are its “fundamental

Fig. 6. The cold compression portion of the EOS, emphasizing the
expanded region with density less than the cold reference density 700.
The plot shows three values of the Mie exponent a and the Morse
potential. Note that the energy integral, Equation 3, of all these curves
is the same, in spite of appearances. The 1/2 term in Equation 3 puts
a strong emphasis on the behavior of the cold pressure near  = 0,
which is different for each curve.

Fig. 7. Pressure-entropy representation of the ANEOS equation of
state. The heavy solid line is the Hugoniot curve. The thin solid line
is derived from the ANEOS parameters for the Mie cold potential in
Table 3. The computation shown by the short dashed line uses the
same input parameters, but employs the Morse potential illustrated in
Fig. 6. Its behavior near the critical point is pathological, showing the
incipient formation of a second peak. The long dashed line illustrates
the result of omitting molecular clusters (in this case, the Mie
exponent a = 1.5 and Evap was increased to 2.08 × 107 J/kg to give the
correct vaporization temperature). The vapor phase entropy is much
too high because in this case the vapor phase is a monatomic gas of Si
and O atoms. The filled circle and square are the entropies of the
liquid and vapor phases, respectively, from the HSC computation
listed in Table 2. The long vertical arrow at entropy 4789 J/kg-K
indicates the release path from shock compression at a particle
velocity of 7 km/s, and indicates the thermodynamic path traversed
by the expanding gas cloud shown in Fig. 11.
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seconds for dinosaur-killer asteroids 15 km in diameter. In
laboratory experiments, these conditions are maintained for
even briefer intervals, measured in microseconds or less,
which presents one of the challenges in relating experimental
studies to natural impacts.

Shock compression is a highly irreversible
thermodynamic process (Melosh 1989). The narrow shock
front that traverses both projectile and target conserves mass,
energy and momentum, but it does not conserve entropy.
Processes such as crushing, unreversed phase
transformations, friction, thermal conduction, and radiation
all act to deposit heat irreversibly in the compressed material.
The results of shock compression experiments are frequently
summarized by the Hugoniot curve, which is the locus of the
final states achieved after a shock wave has compressed the
initial material. Whether plotted as a function of pressure and
volume or the equivalent (through the Hugoniot equations)
particle velocity and shock velocity, the Hugoniot curve does
not represent a thermodynamic path, but simply the ensemble
of final states of a suite of shock compression events.

Once the shock compression event ends, rarefaction
waves from surrounding regions of low pressure propagate
into the compressed region and lower its pressure to ambient
conditions. This decompression is generally adiabatic and, to
a good approximation, isentropic. The series of pressures and
temperatures passed through on decompression can be
represented as a thermodynamic path on the traditional P-V or
P-T diagrams. As Fig. 2 illustrates, however, this path can be
very complex for a real substance such as SiO2, in which the
high-pressure coesite-stishovite phase transition or the liquid-
vapor transition can greatly complicate the release curve. For
this reason, a much better representation is a plot using the
unfamiliar coordinates of pressure and entropy on a P-S
diagram. To my knowledge, the first people to use such plots
were Kieffer and Delany (1979), in the context of volcanic
venting, a process that also approximates the isentropic
expansion of a complex mixture of substances. Once the

Hugoniot curve is drawn on a P-S diagram, along with the
phase boundaries of the substance it represents, the release
isentropes are simply vertical lines, and the course of
expansion subsequent to shock compression is easily
followed. Figure 7 illustrates this type of diagram for SiO2.

Knowledge of the thermodynamic cycle describing
shock compression and release is important for a number of
reasons. Understanding the aftermath of an impact, which
includes an inventory of how much material was vaporized,

Fig. 1. The phase diagram of SiO2 as currently known (data from Presnall 1995). The left diagram is plotted in conventional form with linear
pressure and temperature axes. The right contains the same data, but uses a logarithmic pressure axis that expands the low-pressure region and
permits the liquid/vapor phase curve and critical point to be shown on the same plot (but with a higher temperature limit). The ANEOS
computation from which this phase curve is derived is described later in this paper.

Fig. 2. Thermodynamic paths of the adiabatic release of shocked SiO2
from high pressure on a log P versus T diagram. The Hugoniot curve,
indicating the final result of increasingly strong shock compression
of quartz, is shown as a heavy line, while the thin solid lines are
decompression isentropes. The phase curve separating liquid and
solid phases is shown as a heavy line and the critical point by a heavy
dot. The numbers labeling the release adiabats are the particle
velocities in the shocked material in km/s. These velocities can be
interpreted as the outcome of an impact experiment between identical
materials at twice the particle velocity. Thus, the curve labeled 7 is
the release isentrope of a face-on impact between two quartz plates at
14 km/s. This isentrope approximately separates states that
decompress first to a liquid that boils when it reaches the phase curve,
from those so strongly shocked that they decompress as a vapor that
then condense when the isentrope reaches the phase curve. The gray
rectangle encompasses the entire pressure and temperature range in
Fig. 1a.

問いに対する答え	
  
Q:	
  天体衝突時の物質の挙動	


A hydrocode equation of state for SiO2 2085

to 0.3, and accepted a critical density of 650 kg/m3, close to
the estimates of all methods of evaluating the critical point
parameters. The result, listed in Table 1, agrees reasonably
well with that computed from ANEOS. 

This method does not make any implicit assumptions
about the position of the critical point and guarantees that the
critical point lies on the extrapolation of the phase curve. It
thus seems superior to the previous rules of thumb used to
estimate the critical parameters, as well as to the Young and
Adler (1971) hard-sphere model that was, after all,
constructed for metals, not oxides, and seems to fail badly for
SiO2 (the authors also note that it fails badly for some metals
as well).

Note that the initial results from ANEOS did not yield a
critical ratio near 0.3, even for an assumed molecular weight
of 40. However, an adjustment of the shape of the cold-
compression curve, described below, succeeded in adjusting
the critical parameters such to yield a critical ratio nearly
equal to 0.3. Although the Morse potential computation
reported there does give a critical ratio near 0.3 without any
adjustments, the vapor curve on the P-S plot in Fig. 7 is
clearly pathological, having a shape that approaches a double-
peaked curve, which would give an unrealistic multiple
critical point.

THE ANEOS EQUATION OF STATE

The ANEOS equation of state was developed at Sandia
National Laboratories, principally by Sam Thomson, between
about 1970 and 1990 (Thompson 1973, 1990; Thompson and
Lauson 1972a, 1972b). The name ANEOS emphasizes that it
is based on a series of ANalytic approximations to various
terms in the EOS. ANEOS grew out of what was originally a

tabular EOS that had analytic extensions to regions of density
and temperature not covered by the tables (Thompson and
Lauson 1972a). In later work (Thompson and Lauson 1972b),
Thompson evidently decided that the difficulties of locating
phase boundaries in a purely tabular EOS were so severe that
an approach using analytic functions throughout offered
many advantages in constructing a thermodynamically
consistent EOS.

The basic approach in ANEOS is to start with an analytic
expression for the Helmholtz free energy, F(7, T). Because
each hydrocode time cycle begins with freshly computed
values of density 7and internal energy E, this is not precisely
the form most useful for hydrocode computations. However,
a simple Newtonian iteration of the temperature T to find a
target value of the internal energy E is typically very quick
and reliable because the computation itself determines the
slope dE/dT (equal to the heat capacity CV) at constant
density. The heat capacity is invariably positive and non-zero,
so the iteration almost never fails. As a bonus, this method
also returns the temperature, which is not readily accessible
from many widely used hydrocode EOS, such as the Tillotson
equation (Tillotson 1962) or a Mie-Gruneisen EOS (Zharkov
and Kalinin 1971).

The Helmholtz free energy F is the most natural
thermodynamic potential to use in impact computations
because temperature T and density 7 are its “fundamental

Fig. 6. The cold compression portion of the EOS, emphasizing the
expanded region with density less than the cold reference density 700.
The plot shows three values of the Mie exponent a and the Morse
potential. Note that the energy integral, Equation 3, of all these curves
is the same, in spite of appearances. The 1/2 term in Equation 3 puts
a strong emphasis on the behavior of the cold pressure near  = 0,
which is different for each curve.

Fig. 7. Pressure-entropy representation of the ANEOS equation of
state. The heavy solid line is the Hugoniot curve. The thin solid line
is derived from the ANEOS parameters for the Mie cold potential in
Table 3. The computation shown by the short dashed line uses the
same input parameters, but employs the Morse potential illustrated in
Fig. 6. Its behavior near the critical point is pathological, showing the
incipient formation of a second peak. The long dashed line illustrates
the result of omitting molecular clusters (in this case, the Mie
exponent a = 1.5 and Evap was increased to 2.08 × 107 J/kg to give the
correct vaporization temperature). The vapor phase entropy is much
too high because in this case the vapor phase is a monatomic gas of Si
and O atoms. The filled circle and square are the entropies of the
liquid and vapor phases, respectively, from the HSC computation
listed in Table 2. The long vertical arrow at entropy 4789 J/kg-K
indicates the release path from shock compression at a particle
velocity of 7 km/s, and indicates the thermodynamic path traversed
by the expanding gas cloud shown in Fig. 11.

T(
K)
	
  

P(
Gp

a)
	
  

P(Gpa)	
   S(J/kg/K)	


衝突圧縮で、Hugoniot曲線上の１点にのる　（典型的な衝突では臨界点を超える）	
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低圧の周辺から希薄化波が伝わり断熱減圧（S保存）:	
  気相・液相の出現	
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断熱膨張の経路はEOSによって決まる	
  
　→　最終状態の気相・液相の割合に影響	
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