第三回衝突勉強セミナー 2013/1/31

衝突クレーターのスケーリング解析とは?

参考論文

Scaling of oblique impacts in frictional targets: Implications for crater size and formation mechanisms

Dirk Elbeshausen, Kai Wunnemann, Gareth S. Collins Icarus 204 (2009) 716-731

河本 泰成(神戸大M1)

- 太陽系天体の起源と進化にとって衝突過程は非常に重要
- ・衝突天体、標的、クレーターサイズの関係
 →スケーリング則
 →実験室スケールでの衝突結果を惑星スケールに外挿する
- 衝突には様々なパラメータが複雑に関わっている
 →それぞれの関わりを調べるのには次元解析が有効
 →最も成功しているものがπスケーリング

πスケーリング

- クレーター体積Vに関係する量
 →衝突速度U、標的密度p、弾丸密度δ、強度Y、重力加速度g、弾丸質量m
 →V=F(U, p, δ, Y, g, m): 7つの物理量
- [kg], [m], [s]の3つを基本単位とすると
 7-3=4つの無次元数(π_v=F(π₂, π₃, π₄))ができる

$\pi_v = \rho V/m$	規格化クレーター体積
$\pi_2 = 1.61 \text{gL/U}^2$	規格化弾丸直径
$\pi_{3} = Y/(\delta U^{2})$	規格化強度
$\pi_4 = \rho/\delta$	規格化密度

 π₂とπ₃を比較する; π₃/π₂=Y/pgL →Y>>pgL: 強度支配域 →Y<<pgL: 重力支配域

- クレーター形成は弾丸の直径L、速度U、密度δに個別に依存するのではなく、それらを組み合わせた量に依存
 →カップリングパラメータ: C=LU^µδ^v (Dienes and Walsh, 1970)
- この変数を導入するとV=F(C, ρ, Y, g)
 - →重力支配域(π_3 無視)で、弾丸標的密度比(π_4)~1として次元解析

$$\pi_V = C_V \pi_2^{-\gamma}$$
 …(※)
C_v:標的により異なる量
y=3µ/(2+µ)

- ・ 衝突では様々なγの値
 ・ 乾燥砂への衝突:γ=0.507
 ぶった砂、水:γ=0.65
- πスケーリングに組み込まれ ていない標的の性質でγを 変化させうるのは内部摩擦と 空隙率(Wunnemann, 2006)

▶ これまで、これらはスケーリング則で考慮されていない

• 実際には斜め衝突は支配的

→クレーター体積は衝突角度とともに正弦関数的に減少 (Gault and Wedekind, 1978)

→この関係はある一定の弾丸標的組み合わせでしか 成り立たないかもしれない

- ・ 衝突速度の垂直成分のみを使用して、衝突角度の影響をス ケーリング則に組み込む(Chapman and Mckinnon, 1986)
 →砂への室内実験を除いて、適切に試されていない
- ▶ 衝突角度とクレーターサイズの関係はまだ確立されていない
- ▶ 特に、斜め衝突での摩擦係数の影響がよくわかっていない

数値モデル

- 斜め衝突のモデル化には3つの空間座標が必要
- クレーター形成過程全体をシミュレーションするため、
 広範囲でのかなりの数のシミュレーションが必要
- ▶ 非常に効率的な計算コードが必要

→iSALE-3Dを開発

→多様な物質をシミュレーションできる

数值実験条件

- 地球のような重力条件
- 衝突速度6.5km/s
- 衝突角度30-90°
- 結合強度0
- ・ 摩擦係数0, 0.2, 0.7(典型的な砂の値)
- 弾丸直径430m-3km

クレーター形状への衝突角度の影響

- f=0:30°でもほぼ対称
- f 増加: 衝突角度の影響 が高まる
- ・明らかに非対称だが、
 すべてのモデルで
 クレーターの楕円率は
 1.01以下
 →円形クレーター

クレーター体積への衝突角度の影響

異なるサイズの弾丸でπ2の値を変えた、衝突角度と規格化クレーター体積の関係

- ・ どちらの場合も、クレーター体積は衝突角度のsinにおおよそ比例する
- π_2 にはほとんど依存しない
- f=0.7の場合、<u>衝突速度の垂直成分だけがクレーター体積を決める</u>
 とした場合(規格化クレーター体積がsin(a)²(こ比例)に近い

クレーター体積への衝突角度の影響

- 左図:摩擦係数増加 $\rightarrow C_{\nu} \geq \gamma$ 減少
- 右図:衝突角度のクレーター体積への影響は
 摩擦係数にわずかに依存

摩擦係数と衝突角度のスケーリング則への組み込み

・ 摩擦係数に伴うC_vとγの減少(図b,d) →<u>摩擦係数はクレータースケーリングに影響する重要なパラメータ</u>

まとめ

クレーター形成における衝突角度と標的摩擦係数の影響を 調査した

- 標的表面への30°以上での衝突は円形クレーターを作る
- f=0.7の標的への衝突では、クレーター形成に衝突速度の垂直成分だけが影響する
- ・
 πスケーリングはf=0.7で結合をほとんど持たない砂に 似た性質を持つ物質への、惑星スケール斜め衝突に適用 できる