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*Planetary Atmospheres
eImpacts

*Planetary Igneous Processes
*Planetary Differentiation
*Exobiology

*Cosmochemical Origins
eEarly Solar System
Chronology

eInterplanetary Dust Particles
and Presolar/Solar Grains
*Small Bodies (including
comets, asteroids, near-Earth
objects)

*Outer Planets/Satellites/Rings
eDifferentiated Bodies

eMars Geomorphology
eMartian Geochemistry
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*Moon

*Venus

*Mercury

*Material Analogs (including
both physical and chemical)
eEnvironment Analogs
(including terrestrial
operationla analogs)
*Planetary Mission Concepts
eInstruments and Payload
Concepts
*Education/Public Outreach
*A New Moon
*Characterizing Near-Earth
Objects

*Water in the Solar System
*Other
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. Hypervolocity Impact Experiments on Low
Temperature Sand:Ice Targets [Simcox et al.]

. Asteroids Without Ejecta [Housen & Holsapple]

. Comparing Experimental and Numerical Results
for Subsurface Failure Following Oblique Impacts
into Planar Targets [Stickle & Schultz]

. Large-scale Experiments to Determine the
coefficient of Restitution for Meter-scale Granite
Spheres [Durda et al.]

1. Hypervolocity Impact Experiments on Low Temperature
Sand:Ice Targets [Simcox et al.]

Table 1. Crater sizes in this study.

Sand | Temp. | Vel Dia. Silicate
X) (kms") | (mm) Content

S1 255 5.08 325
2%

JSC-Marsl | 20-1000um =g, 18910 | 5.08 26.5

255 5.05 28.0

")} -
AR 229-836ym 182+13 | 4.96 45.0

84%

255 5.02 29.5

1)) ~
HEAE 27-585um 188+14 | 5.13 31.0

81%
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1. Hypervolocity Impact Experiments on Low Temperature
Sand:lce Targets [Simcox et al.]
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Fig 1. (a) Crater in S2 at 255 K (coin diameter = 22.5
mm). (b) Crater 84 at 203 K, where lhc deeper cen
tral pit (arro surrounded by an incomplete spall
zone (coin diameter = 24.5 mm),
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2. Asteroids Without Ejecta [Housen & Holsapple]
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2. Asteroids Without Ejecta [Housen & Holsapple]
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Figure 1. Ejection velocity vs launch position for sand
and porous materials.
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3. Comparing Experimental and Numerical Results for
Subsurface Failure Following Oblique Impacts into Planar
Targets [Stickle & Schultz]
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Figure 1. Comparison between observed and predicted
damage zone sizes. Impact by a Pyrex projectile at 5.5

& 7 7 IJ )b L: TE]_-% % 30° ‘T\\ pyreXI* % km/s for a 30 degree impact: a) 8 psec after first con-
5 : 5km/s 'T\‘,fﬁ%'g tact; b) 91 psec gaﬂer ﬁfs[ c‘nnlacl,paﬂer damage zone

finished growing. Though morphologically similar,
CTH simulations cannot exactly reproduce the observed
damage zones. The red line corresponds to D=1, and
locations where conditions for failure have been met,
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Hyd ro COde 2 CTH while the green line shows the total extent of the dam-
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2. Asteroids Without Ejecta [Housen & Holsapple]
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Figure 3. Thresholds for ejecta blanket formation.

3. Comparing Experimental and Numerical Results for
Subsurface Failure Following Oblique Impacts into Planar
Targets [Stickle & Schultz]
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Figure 2. Linear failure planes along impact trajectory
for impact of aluminum projectile into PMMA block.
Bladed failure is much more apparent following im-
pacts with Aluminum, while failure appears to be dis-
tributed following impact with Pyrex projectile. CTH
models indicate blades are the result of shear failure.




4. Large-scale Experiments to Determine the coefficient of 4. Large-scale Experiments to Determine the coefficient of
Restitution for Meter-scale Granite Spheres [Durda et al.]

Restitution for Meter-scale Granite Spheres [Durda et al.]
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Figure 3. Coefficient of restitution as a function of

impact speed for 1-meter diameter granite spheres.
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Figure 1. A I-meter-diameter granite sphere sus-
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Figure 2. Granite spheres in equilibri

pended for the large-scale ‘pendulum’ experiments. Left: Headache balls low near the sphe &

Left: Placement of support strapping and lifting from Headache balls moved higher up to min

forklift. Right: Sphere suspended in place for experi- wobble after impacts.

- £~085 (@ Vi< 2m/s)
ment with 1-meter scale bar and experiment run num-
ber marker shown.




