THE ASTROPHYSICAL JOURNAL, 701:2019-2032, 2009 AUGUST 20

ABUNDANT CIRCUMSTELLAR SILICA DUST AND SIO GAS CREATED BY A GIANT HYPERVELOCITY COLLISION IN THE ~ 12 MYR HD172555 SYSTEM

C. M. LISSE, C. H. CHEN, M. C. WYATT, A. MORLOK, I. SONG, G. BRYDEN, AND P. SHEEHAN

神戸大 M1 高沢晋

1. Introduction

SED for HD172555 showing the BVR/2MASS determined photospheric emission (black) and the large IR excess detected by both IRAS (green) and Spitzer MIPS (blue) and Spitzer IRS (red)

がか座 星はダストからなる 拡がった星周円盤を持っている HD172555も大きな星周円盤 を持っている? <u>ハッブル宇宙望遠鏡にコロナグラフを付けてHD172555の</u> 散乱光を観測(D. Ardilla et al. 2009)

半径15AUより外側には星周円盤は見られない

多くの星周物質は15AUよりも内側にある

HD172555のスペクトル分布は ~ 245Kの黒体放射に最も合う

ダストの温度は比較的高く、 中心星から3~4AUに位置する (HSTの結果と調和的)

地球型惑星の形成過程を知るためにも、HD172555を 調べることは重要である

<本論文の目的>

HD172555のスペクトル分布の特徴(中間赤外域における 強い放射)を用いてダストの主成分を分析し、ダストの量・ 位置する場所・温度などを調べる

2.1. Observations

観測天体: HD172555(2004年3月) 望遠鏡: スピッツァー赤外線望遠鏡 観測波長:5.2-14.0µm(/ ~90) 9.9-19.6µm(/ ~600) 18.7-37.2µm(/ ~600)

HD172555のスペクトル分布を 他の天体のスペクトル分布と比較

HD100546: A0 star

有機物に富む若い星

Hale-Bopp Coma

Tempel 1 Ejecta

HD113766: F5 star

岩石質惑星を形成している若い星 HD69830: 濃い惑星間塵を持つ主系列星

2.2.1. Deep Impact

HD172555のスペクトル分布の特徴を理解するために、 ディープ・インパクトとそのスピッツァーによる赤外線観測 結果を用いたTempel1ダストモデルを使う

<ディープ・インパクト(2005年7月4日)>

太陽から1.51AUに位置する 彗星「Tempel 1」に、質量370kgの インパクターを速度10.2km/sで 衝突させた

彗星からのエジェクタをスピッツァー 望遠鏡により赤外線観測

Computer rendering of the Deep Impact space probe after separation of the impactor (credit NASA/JPL)

2.2.2. Thermal Emission

ダスト雲の放射フラックスは次のように計算される

T: 粒子温度 a: 粒子半径 /: 組成 r*: 中心星からの距離
 : 望遠鏡からの距離 B: 波長 の黒体放射
 Q_{abs}: 組成 i 波長 のときの放射効率
 dn/da: 半径 a の粒子の数

2.2.3. Composition

Temel1エジェクタの組成を決定するため、Tempel1 エジェクタのスペクトルと実験室で得られたさまざまな 物質のスペクトルとを比較

惑星間ダストや隕石、彗星、YSOs、デブリ円盤に存在が 報告されている物質などを比較に用いた

結果、主に以下の物質がTempel1エジェクタを作っていることがわかった(Lisse et al. 2006)

Ca/Fe/Mg-rich silicate, Carbonates, Phyllosilicates, Water-ice, Amorphous carbon, Ionized PAHs, Fe/Mg sulfides

これらの物質で他の彗星ダストやYSOs、デブリ円盤の スペクトルを説明できた(Lisse et al. 2006, 2007a, 2007b, 2008)

2.2.4. Particle Size Effects

粒子サイズを 0.1-1000 µ m の範囲にとる 放射率の粒子サイズ効果は次式のように仮定する

1 – Emissivity(a, λ) = [1 – Emissivity(1 μ m, λ)]^($a/1 \mu$ m).

サイズの小さい粒子は鋭いピークのあるスペクトルを持つ サイズの大きい粒子には鋭いピークは見られない

Tempel 1 のエジェクタもHD172555もスペクトルに鋭いピーク
→ 小さい粒子(~µm)が多く存在

Tempel 1 のエジェクタは0.5-2.0 µ mのものがほとんど (Lisse et al. 2006) HD172555のダストも小さい粒子が支配的 (傾きの急)なサイズ分布をしていると考えられる

2.2.5. Particle Temperature

ダストの温度はその組成とサイズによって変わる 最も小さいダストの温度 T_{dust} は、データに合うように決定 得られた T_{dust} を下式に入れてHD172555とダスト間 の距離 r* を求める $T_{\rm dust} = T_{\rm T1ejecta} (L_*/L_{\rm solar})^{1/4} (1.51 \text{ AU}/r_*)^{1/2},$ T_{dust}: HD172555の星周ダストの温度 $T_{T1 \ ejecta} \sim 340 \text{K}$ (Lisse et al. 2006) L*: HD172555の放射光度 L_{solar}:太陽の放射光度

r*: ダストとHD17255との距離

最も大きいダストの温度は熱平衡温度(LTE)を使う

その間のサイズのダストの温度は内挿

3.1. Dust Composition

Tempel 1 エジェクタの組成モデルではHD172555の星周 ダストのスペクトルを説明できない HD172555の7-13 µ mのスペクトルの特徴とよく合うのは 黒曜石やテクタイト(アモルファスシリカ)

黒曜石やテクタイトは地球上の溶岩や衝突クレーターに見られる(岩石の急熱 急冷によってできる) HD172555の星周ダストの 起源は天体衝突?

(>100 µm)の集まり

⁵ 10 15 20 25 30 サイズの大きな粒子は特徴的なスペクトルを持たない ので、その組成はわからない 温かく小さいダストの全表面積の約80%の表面積をもつ

555 Disk Spectral Model

35

Amorph Silica (Obsidian

0.0

サイズの小さい粒子ほど鋭いピークのあるスペクトルを持つ

シリカの鋭いピークができるように温かく小さいダストの サイズ分布を決めると、 $dn / da = a^{-3.95 \pm 0.10} (0.1 \sim 1000 \mu m)$

- ➡ 衝突平衡状態のサイズ分布 dn / da = a^{-3.50} よりも ~ µmのダストが多い
- ➡ ダストを供給するイベントがあった(0.1 Myr 以内)

サイズ分布から見積もられたダスト質量の下限値は、 4 × 10¹⁹ kg

(これは半径150kmの天体の質量に相当)

サイズの大きな粒子には特徴的なスペクトルが見られない

しかし、下限値を見積もることはできる

ダストは全て100µmだと仮定し、その全表面積は温かく 小さいダストの全表面積の約80%であるとすると、 その質量の下限値は、

 $10^{21} - 10^{22}$ kg

(これはCeresの質量に相当)

SiOガスの質量はCrovisier (2002)の式を用いて見積もる SiO分子N_{mol SiO} 個が出す光のエネルギー(1AU)は N_{mol SiO}×g×h g:SiO分子が励起される確率

これが地上に届く時には薄められ、それを観察する F d (観測エネルギー) = N_{mol SiO} ×g×h / (r_h 4 ²) r_h: HD172555 - SiOガス間の距離 : HD172555 - スピッツァ - 間の距離 これを変形すると

> $N_{\rm mol \, SiO} = 4\pi \, \Delta^2 r_h^2 \times F_\nu d\lambda / (g \times h\lambda)$ = 1.4 ± 0.7 × 10⁴⁷ molecules

ここからSiOガスの質量を求めると、

$1.1 \pm 0.6 \times 10^{22} \text{ kg}$

3.3. Dust Temperature and Location

小さいダストの温度は、5-35 µ mのスペクトルデータ にもっともよく合う 305K とする

これを次式に入れる $T_{\text{dust}} = T_{\text{T1ejecta}} (L_*/L_{\text{solar}})^{1/4} (1.51 \text{ AU}/r_*)^{1/2},$

 $T_{T1 \ ejecta} \sim 340 \text{K}$ (Lisse et al. 2006) L_* : $\sim 9.5 L_{solar}$ (Wyatt et al. 2007b)

r_{*} (ダストとHD17255との距離)=5.8±0.6 AU を得る

熱平衡を考えると100 µ mよりも大きいダストはこの距離 だと~206K(調和的)

5.8 ± 0.6 AU は、太陽系でいうとメインベルトの内側に相当

4.2. Formation Processes in HD172555

HD172555の星周ダストは、微惑星どうしの衝突 (V_{impact} > 10km/s)でできたと考えると説明がつく

衝突点の岩石が高温となり 気化 →

そのまわりから放出した破片 は溶融 急冷し、テクタイト のようなアモルファスシリカを 作る

温か〈小さいダスト (~µm)の集まり

SiOガス

深いところからサイズの 大きな破片が放出

5. CONCLUSIONS

- ・ HD172555は中間赤外域に特徴的なスペクトルを持つ
- HD172555の星周ダストは大きく分けて以下の3種類

➡ ~ μ mのアモルファスシリカが支配的

冷たく大きい ダストの集まり

温かく小さい

ダストの集まり

>100µmのダストの集まりで、固体 ダストの質量の大部分を占めるが、 その組成は不明

- 星周ダスト質量の主な成分の一つ 岩石微惑星どうしの衝突の証拠
- ・HD172555の星周ダストは岩石微惑星どうしの衝突 によってできたと考えられる