特集「宇宙防災:科学と工学の新たな展開」その2 Hera探査機搭載熱赤外カメラ TIRIの 地上校正試験

坂谷 尚哉¹, 岡田 達明¹, 嶌生 有理¹, 千秋 博紀², 関口 朋彦³, 荒井 武彦⁴, 石崎 拓也¹, 金丸 仁明⁵, 神山 徹⁶, 出村 裕英⁷, 古川 聡一朗⁵, 田中 智¹

(要旨) 2024年10月7日, ESAのプラネタリーディフェンスミッションHeraが無事打ち上げられた. JAXA は熱赤外カメラTIRIを提供しており, 2026年末の二重小惑星Didymos-Dimorphos到着に向けて,地 上校正試験および軌道上データの解析を進めている.本稿では,フライトモデル開発の中で実施した,地 上校正試験での実施内容,一部結果を紹介する.今後,Didymos-Dimorphosの高精度観測に向けて 深宇宙や地球・月などの軌道上撮像データを含めて評価を実施する.

1. はじめに

ESAの二重小惑星探査機 Hera [1] は2024年 10月7日にFalcon-9ロケットによって打ち上げられ た.今後,火星フライバイを経て,2026年に二重小 惑星Didymos-Dimorphosに到着して観測を実 施する.熱赤外カメラTIRI (Thermal InfraRed Imager) は,はやぶさ2中間赤外カメラTIRの開発 経験を元にしてJAXAが新規開発し,Heraに提供 した装置である.非冷却マイクロボロメータアレイを 2次元センサ (1024 × 768 pix)とし,光学系とフィ ルターホイールを組み合わせることで,分光画像を得 ることが可能である.表1にTIRIの緒言を示す.機 器の概要は,岡田ほか [2] を参照頂きたい.

TIRIの科学目的は小惑星Didymos-Dimorphos の表面温度を観測し,表面物性に関する情報を得る こと,および分光観測による化学的な情報を得るこ とである.これらを達成するためには,地上での十

1.字宙航空研究開発機構 2.千葉工業大学 3.北海道教育大学 4.前橋工科大学 5.東京大学 6.産業技術総合研究所 7.会津大学 sakatani.naoya@jaxa.jp 分な機器校正, すなわちカメラの出力値から正しく 小天体表面の放射輝度・輝度温度を求めることが必 要である.可視カメラの場合,恒星や遠方の惑星な どの撮像で,打ち上げ後もある程度の感度補正や確 認が可能であるが,赤外カメラの場合は感度不足に より難しく,地球や火星フライバイなどの面的なター ゲットがある状況に限られる.

本稿では、TIRIのエンジニアリングモデル・フラ イトモデルを通じて行った地上校正試験の概要およ び結果の一部を紹介する.TIRIの較正試験は、は やぶさ2TIRの較正試験実施内容 [3] を改良したも

項目	機器仕様			
検出器	Lynred PICO1024 Gen2			
有効画素数	1024 × 768			
視野角 [°]	13.3×10.0			
空間解像度 [°/pixel]	0.013°/pixel			
フィルター	close: シャッター閉			
	広帯域 wide-band: 8-14 µm			
	狭帯域(中心波長)			
	filter-a: 7.8 µm, filter-b; 8.6 µm, filter-c: 9.6 µm,			
	filter-d: 10.6 μm, filter-e: 11.6 μm, filter-f: 13.0 μm			
ADC 諧調 [bit]	14 (積算後 16 or 8)			
積算枚数	2^N (N=0, 1, 2,, 7)			

表1:熱赤外カメラ TIRI の緒言.

のである.なお,2024年10月時点で全てのデータを 統合した十分な校正は完了しておらず,本稿で書か れた解析結果は随時更新される予定であることに注 意願いたい.

2.赤外カメラ校正試験の評価項目

2.1 輝度校正

校正試験の最終的な目的は, ボロメータの出力 とターゲットからセンサに入射する熱放射量の間 の相関式を得ることである. あるピクセル (*i*,*j*) に 入射するエネルギー (放射輝度, radiance) を *I* [W/m²/sr], 出力をDNとすると,

$$DN = a_{ij}I + b_{ij} \tag{1}$$

と表される. ここで輝度校正とは全ピクセルで係数 a_{ij}, b_{ij}を求めることを意味する. つまり, 出力から放 射輝度を計算することができ, 2次元の放射輝度画 像, 温度画像を得ることができる. 輝度校正を実施 するためには, 温度の異なる黒体ターゲットを撮像 すれば良い.

2.2 面積効果

一般的に放射温度計や赤外カメラにおいて、測定 温度の誤差の一因となり得るのが、面積効果 (SSE, Size-of-Source Effect) である.これは同じ温度 のターゲットでも、ターゲットのサイズ、もしくはター ゲットとの距離によって出力が異なる事象である[4-6]. 別の言い方をすると、ターゲットの大きさによっ て式(1)の係数 a_{ij}, b_{ij} が変化する.惑星探査機の 場合は限られた撮像機会において距離が遠い(ター ゲットが小さい)場所から近接(ターゲットが大きい) まで使用するため、面積効果の補正式を確立する必 要がある.面積効果の原因としては、光学系での回 折や反射、入射光によるセンサの加熱などが原因と して考えられているが、補正方法として確立したもの はない.

2.3 機器温度補正

ボロメータの出力は同じターゲットだとしても機器温度によって変化する.ボロメータ素子やフィル ター,光学系の温度の影響が大きいと考えられるが, 装置としてはそれぞれを独立に温調することは難しいため,一般的には経験的な式で補正する.式 (1) においては,感度 *a_{ij}*,オフセット *b_{ij}* それぞれが機器の温度によって変化する.

3. TIRI 地上校正試験

3.1 校正試験装置

校正試験装置の概要図を図2に示す. 真空チャン バ内に新規開発した2軸の回転ステージを設置して

図2:較正試験装置セットアップ.

あり, その上にTIRIを設置すること首振りを正確 に行うことが可能である. TIRIのラジエータ面側に は冷凍機により -120℃の吸熱面を設けており, ラジ エータと平編み銅線によって接続し, 伝熱冷却を行 う. TIRIの前面にはゲルマニウムの赤外透過窓を設 置し, 大気中のターゲットを撮像できるようになって いる.

校正に使用した黒体ターゲットは以下の3種類で ある.

(1) コリメータ黒体

無限遠からの熱放射を模擬するため、CI System 社のコリメータMETS-8-2.9を利用した. ターゲッ トの視野角はコリメータ内の黒体炉前面に設置され ているターゲットホイールを回転させることにより、 2.8°, 1.5°, 0.5°と変更が可能である. 温度範囲は -20℃ ~ +150℃ である.

(2)平面黒体炉

CI System社のSR800N-7Dを用いた. 平面黒体

炉をTIRIレンズに近づけることで、画像全面に均一 温度ターゲットを写すことが可能となる.また、黒体炉 の距離を遠ざけることで、画像内のターゲットサイズを 変更している.距離は4種類であり、全面を黒体が覆 う条件に加えて、視野角換算で10°,6°,2.1°である. ターゲットの温度範囲は+20℃~+125℃である.

(3)低温黒体プレート

冷凍機のコールドヘッドをチャンバ内に導入し,視 野の全面をカバーする黒体プレートを冷却したもの を低温ターゲットとして利用した.低温黒体プレート に関しては,ターゲットサイズは変更できない.なお, 校正試験実施後にそのままのセットアップで,冷凍 機の温度設定と低温黒体プレート表面温度の関係 を調査した.

3.2 試験手順

フライトモデルの校正試験は 2023/11/6 ~ 11/10 に明星電機伊勢崎工場にて実施した.表2に実施 内容をリストで示す.各ターゲット・姿勢に対して,

表2:実施内容一覧.

ターゲット/サイズ	温度	回転ステージ姿勢	備考
コリメータ	-20°C	23 姿勢	
2.8°, 1.5°, 0.5°			
コリメータ	0°C	5 姿勢	
2.8°, 1.5°, 0.5°			
コリメータ	+20°C	5 姿勢	
2.8°, 1.5°, 0.5°			
コリメータ	+50°C	23 姿勢	
2.8°, 1.5°, 0.5°			
コリメータ	+75°C	5 姿勢	
2.8°, 1.5°, 0.5°			
コリメータ	+100°C	5 姿勢	
2.8°, 1.5°, 0.5°			
コリメータ	+125°C	5 姿勢	
2.8°, 1.5°, 0.5°			
コリメータ	+150°C	23 姿勢	
2.8°, 1.5°, 0.5°			
コリメータ	+150°C	27 姿勢	歪み補正用
0.1°			
黒体炉	+20°C	Full, 10°: 1 姿勢	
Full, 10°, 6°, 2.1°		6°, 2.1°:5 姿勢	
黒体炉	+50°C	Full, 10°: 1 姿勢	Full: 内部ヒーターによる機器
Full, 10°, 6°, 2.1°		6°, 2.1°:5	温度変更を実施
黒体炉	+75°C	Full, 10°:1 姿勢	
Full, 10°, 6°, 2.1°		6°, 2.1°:5	
黒体炉	+100°C	Full, 10°: 1 姿勢	
Full, 10°, 6°, 2.1°		6°, 2.1°:5 姿勢	
黒体炉	+125°C	Full, 10°:1 姿勢	
Full, 10°, 6°, 2.1°		6°, 2.1°:5 姿勢	
低温黒体	+20°C	1 姿勢	
低温黒体	0°C	1 姿勢	
低温黒体	-25°C	1 姿勢	
低温黒体	-50°C	1 姿勢	内部ヒーターによる機器温度変
			更を実施
低温黒体	-75°C	1 姿勢	
低温黒体	-100°C	1 姿勢	
低温黒体	-120°C	1 姿勢	内部ヒーターによる機器温度変
			更を実施

図3:撮像データの例(wide-band).

8band 撮像(close, wide-band, filter-a, b, c, d, e, f, 表1参照)を実施した. 撮像データの一例を図 3 に示す.

温度 T のターゲットからボロメータセンサに入射 する放射輝度は以下の式で計算される.

$$I(T) = \int_0^\infty R(\lambda)\tau(\lambda)\varepsilon(\lambda)B(\lambda,T) \,d\lambda \tag{2}$$

ここで $R(\lambda)$ はTIRIのシステム応答関数(フィルター 透過率,レンズ透過率,ボロメータ感度の積), $\tau(\lambda)$ はゲルマニウム窓の透過率(低温黒体では使用し ない), $\epsilon(\lambda)$ はターゲット黒体の放射率, $B(\lambda,T)$ は Planck 関数である.

4.解析結果

4.1 機器温度依存性

図4に低温黒体-120℃で, TIRIケース温度と wide-band 出力値の関係を示す. このように, ケー ス温度と出力値の間には線形関係があり, 以下の式 で近似できる.

$$DN_{i,j}^{-120degC} = A_{i,j}T_{CASE} + B_{i,j}$$
(3)

ここで、*DN*^{-120degC} は -120℃黒体のピクセル (i,j) での出力, *A_{i,j}*, *B_{i,j}* はフィッティング係数である.この 式を使うことで、任意のケース温度における -120℃ 黒体の出力画像を予想することができる(もしくは ケース温度の違いを補正することができる).同様の ケース温度と出力値の間の負の相関は、機器温度を

図5:中心ピクセルにおける全面黒体炉ターゲットの放射輝度と差分出力の関係. 各直線は式 (1) でのフィッティングを示す. 右上は傾きa_{ii} の マップ, 右下は切片 b_{ii} のマップである.

図6:中心ピクセルにおけるコリメータ2.8°ターゲットの放射輝度と差分出力の関係. 各直線は式 (1) でのフィッティングを示す. 右上は傾きa_i, の マップ, 右下は切片 b_i, のマップである. コリメータ像が複数写っているのは, 回転ステージによりTIRIの姿勢を変えていることによる.

コントロールした低温黒体 -50℃, 黒体炉 +50℃の データでも確認できる. ただし, 式 (3) の係数は異な り, その原因については今後の検討が必要である.

4.2 輝度校正

センサ毎のオフセットばらつき,および機器温度 に依存した出力の変化をキャンセルすることを目的 として,低温黒体-120℃の画像を減算する.任意の ターゲット撮像時のケース温度が *T_{CASE}* であるとき, オフセット除去後の出力値ΔDN_{i,j}は以下で計算され る.

$$\Delta DN_{i,j} = DN_{i,j} - DN_{i,j}^{-120degC}$$
(4)

式 (2) で計算された放射輝度と式 (4) で計算した 差分出力の関係を図5および図6に示す. ここで,図 5は全面黒体炉,図6はコリメータ2.8°のデータを用 いている.また,解析はケース温度 42-44℃のデータ のみを抽出した.

名々

ーゲットサイズのデータ ー

16 18

s = -17.889650

図7:面積効果補正(一例として wide-band のみを示す).

ターゲットの写る全てのピクセルに対して,式 (1) のフィッティングを行い, 傾き *a_{ij}*, 切片 *b_{ij}* を求めた. そのマップを図5,6の右側に示す.ある画像が得ら れたときに,任意のピクセルに入射する放射輝度は 以下で計算される.

$$I_{i,j} = \left(\Delta DN_{i,j} - b_{i,j}\right) / a_{i,j} \tag{5}$$

また,放射輝度の値を用いて式(2)を適用すること でターゲットの温度を導出することができる.

4.3 面積効果補正

撮像した全てのターゲットに対して係数 *a*_{ij}, *b*_{ij} を求めた.全面黒体ターゲットを基準として,傾き *a*_{ij}に対しては全面黒体との比,切片*b*_{ij}に対しては 全面黒体からの差分を取り,それぞれの平均値と ターゲットサイズとの関係を図7に示す.なお,全面 黒体のサイズはTIRIの対角視野16.6°とした.全体 的な傾向として,ターゲットサイズが小さいほど傾き が小さく,切片が大きくなることが分かる.現段階で はこれを面積効果の結果であると考え,任意のター ゲットサイズに対して係数 *a*_{ij},*b*_{ij}を求めることがで きるように直線で近似した.ただし,直線からの乖 離も大きく,その原因,もしくはこの偏差に起因する 誤差は今後の検討が必要である.

4.4 歪み補正

TIRIを回転ステージで首振りしながらコリメー

タ 0.1°を撮像したデータを利用した. 図8に各姿勢 で取得した画像をスタッキングした画像を示す. 中心 からの距離を r' [deg] とすると, 歪み補正後の距離 r [deg] は以下の式で表される.

10 12 14

ターゲットサイズ (deg)

$$r = r' + kr'^{3}$$

$$k = -2.195 \times 10^{-8}$$
(6)

補正前は中心から離れるほど歪みが大きくなり最大 3 pixほどの歪みがあるが,式(6)の補正式を適用し た結果,ズレは 0.4 pix 以下に抑えることが可能に なった.

5.まとめ

450

400

350

300

250 200

150

100

50

0

0 2

本稿では熱赤外カメラTIRIの地上校正試験の 概要と一部の結果を紹介した.出力画像から放射 輝度・輝度温度に変化するための校正式は完成した が,機器温度補正および面積効果補正には課題が 残る.軌道上での深宇宙撮像や地球・月撮像,およ び火星フライバイ時の火星撮像など,小惑星到着前 の軌道上データを最大限活用し,かつTIRIエンジ ニアリングモデル等の地上品を利用して機器の特性 を理解して,引き続き検討を進める.TIRIは打ち上 げ3日後の2024年10月10日に地球・月撮像を実施し, 機能の健全性を確認した(図9).気象衛星での赤外 観測データや月の熱モデルとの比較により,妥当性 を確認することが直近の課題である.

図8:歪み補正用画像(上)と歪み計測(中)・補正結果(下). 横軸は 画像から取得した中心点からの角度, 縦軸は首振り角度から のずれ量である.

図9:2024年10月10日にTIRIで撮像された地球(中心)と月(右上). (Credit: JAXA/ESA).

参考文献

- [1] Michel, P. et al., 2022, Planet. Sci. J. 3, 160.
- [2] 岡田ほか, 2024, 遊星人 3, 220.
- [3] 坂谷ほか, 2024, 日本赤外線学会誌 34, 34.
- [4] Solorio-Leyva, J. et al., 2004, Proc. SPIE 5622.
- [5] Pušnik, I. and Geršak, G., 2021, Sensors 21, 607.
- [6] Schramm, S. et al., 2019, 13th Int. Conf. Sensing Tech., 1.

著者紹介

坂谷 尚哉

宇宙航空研究開発機構 宇宙科 学研究所太陽系科学研究系 2015年,総合研究大学院大学 物理学研究科博士後期課程修 了.明治大学物理学科助教,宇 宙科学研究所招聘職員,立教

大学物理学科助教などを経て,2022年4月から宇 宙科学研究所太陽系科学研究系特任助教.現在, 将来の惑星探査プロジェクトのミッション機器開発 に従事.はやぶさ2#中間赤外カメラTIR, Comet Interceptor B1可視カメラNAC/WACの主責任 研究者(PI)を務める.

岡田 達明

宇宙航空研究開発機構 宇宙科 学研究所 太陽系科学研究系 1996年,東京大学大学院理学系 研究科博士課程修了.博士(理 学).学術振興会特別研究員PD を経て,1999年よりJAXA宇宙

科学研究所助手,2006年より同准教授.2011年より 東京大学大学院理学系研究科准教授(兼任).専門 は惑星科学,惑星物質科学,惑星探査科学.日本の 月・惑星探査計画「はやぶさ」「かぐや」「はやぶさ2」 等に参画.「はやぶさ2」では中間赤外カメラTIRを主 導,帰還試料分析用赤外分光顕微鏡MicrOmega の共同PI.二重小惑星探査計画Heraチーム長,熱 赤外カメラTIRIのPIに従事.

嶌生 有理

宇宙航空研究開発機構 宇宙科 学研究所 宇宙科学プログラム室 2012年,名古屋大学大学院環 境学研究科博士後期課程修了. 2013年から岡山大学惑星物質研 究所にて隕石の表面化学分析に

従事. 2017年からJAXA宇宙科学研究所に入構し,

はやぶさ2TIRデータ解析, 超高速度衝突施設の運 用業務を経て, 2022年から宇宙科学プロジェクトの 支援業務に従事.

千秋 博紀

千葉工業大学 惑星探査研究セン ター

2001年,東京大学大学院理学系 研究科博士課程修了,博士(理 学).海洋研究開発機構,東京工 業大学,サーバー大学などを経て

現職.現在,数値計算による天体の熱進化モデル研 究に従事する一方で,火星衛星探査計画(MMX)で はレーザ高度計の主責任研究者(PI)を務める.

関口 朋彦

北海道教育大学 旭川校 2001年,総合研究大学院大学数物 科学研究科天文科学専攻修了,博 士(理学).1999年よりEuropean Southern Observatory (ESO) Ph.D. student,国立天文台電波

天文学研究系研究員,国立天文台NRO研究員,日 本学術振興会特別研究員,国立天文台ALMA推 進室専門研究職員を経て2008年北海道教育大学旭 川校理科教育専攻准教授,2017年同校教授.現在, 彗星・小惑星・外縁天体など太陽系小天体の可視光 -赤外線-電波波長域での観測研究に従事.2001年 に小惑星イトカワ(研究当時1998 SF36)をESOチリ 3.6m望遠鏡で中間赤外線観測し,小惑星の熱放射 フラックスを日本で初めて計測.

荒井 武彦

前橋工科大学 工学部生命工学領 域

2008年総合研究大学院大学 宇 宙科学専攻 修了.博士(理学). 国立天文台太陽観測所専門研究 職員,JAXA宇宙科学研究所プ

ロジェクト研究員,国立環境研究所特別研究員な どを経て,現在,前橋工科大学生命工学領域准教 授,はやぶさ2やHera探査機搭載中間赤外カメラの データプロダクトの生成や解析ソフトウェアの開発に 従事.

石崎 拓也

宇宙航空研究開発機構 宇宙科 学研究所太陽系科学研究系 2021年,名古屋大学大学院博 士後期課程修了.博士(工学). 2015年に名古屋大学大学院工学 研究科博士前期課程修了後,日

本電気株式会社,名古屋大学大学院博士後期課程, JAXA宇宙航空プロジェクト研究員を経て2024年より現職.現在は特任助教としてリターンサンプルのための熱拡散率測定装置の開発に従事している.

金丸 仁明

東京大学大学院理学系研究科 2020年,大阪大学大学院理学研 究科博士後期課程修了,博士(理 学). 2020年~2022年,宇宙航 空研究開発機構・宇宙科学研究 所にて招聘職員として,はやぶさ

2ミッションの科学データ解析に従事し,小惑星の力 学進化の研究を行なった.現在は,日本学術振興会 特別研究員として東京大学にて,数値シミュレーショ ンを用いて小惑星の力学進化や熱物理の研究を行 なっている.

神山 徹

産業技術総合研究所 デジタル アーキテクチャ研究センター 2012年,東京大学大学院地球 惑星科学専攻修了.博士(理学). 2012年より独立行政法人(現国 立研究開発法人)産業技術総合

研究所・特別研究員,研究員などを経て現デジタル アーキテクチャ研究センター・地理空間サービス研究 チームの研究チーム長.現在,地球観測から惑星探 査まで衛星搭載センサのキャリブレーションの研究 や,熱赤外センサによる観測画像を中心とするデー タ解析に関する研究に従事.専門は惑星科学,惑星 気象学.日本の惑星探査計画「あかつき」「はやぶさ 2」「MMX」等に参画.

出村 裕英

会津大学 宇宙情報科学研究セン ター

1999年,東京大学大学院理学系研究科博士後期課程修了,博士 (理学).旧宇宙開発事業団宇宙 開発特別研究員,会津大学先端

情報科学研究センター宇宙情報科学クラスター長を 経て、2019年より同大学宇宙情報科学研究センター 長を務める.火星探査機のぞみ可視カメラMIC,小 惑星探査機はやぶさ可視カメラAMICA,小惑星探 査機はやぶさ2中間赤外カメラTIR,月周回衛星か ぐや月面撮像分光機器LISM,Hera中間赤外カメ ラTIRI,月極域探査分光カメラALISといった深宇 宙探査プロジェクトの観測機器開発・運用に参画. 現在,深宇宙探査理工学,リモートセンシング,月惑 星探査アーカイブデータサイエンスの研究に従事.

古川 聡一朗

東京大学大学院理学研究科 2024年,東京大学大学院理学系 研究科修士課程修了.現在,東京 大学大学院理学系研究科博士課 程にて,リターンサンプルや隕石 の分光分析,宇宙風化実験の研

究に従事.

田中 智

宇宙航空研究開発機構 宇宙科 学研究所 太陽系科学研究系 JAXA宇宙科学研究所 助手,同 助教授,同准教授を経て2020年 より同教授.月内部を観測する装 置「ペネトレータ」の研究開発をは

じめ,月震計の開発,月・地球などの固体惑星の内部 構造の研究を行っている.現在は土星衛星タイタン 離着陸探査「Dragonfly」に参加し,地震計提供に むけた開発を行っている.