特集「宇宙防災:科学と工学の新たな展開」 プラネタリーディフェンスミッションHeraでの 熱赤外カメラ観測

岡田 達明¹, 田中 智¹, 坂谷 尚哉¹, 嶌生 有理¹, 石崎 拓也¹, 荒井 武彦², 千秋 博紀³, 出村 裕英⁴, 関口 朋彦⁵, 神山 徹⁶, 金丸 仁明⁷, Hera-JPチーム 2024年6月12日受領, 査読を経て2024年7月25日受理

(要旨) 2013年2月15日にロシア連邦チェリャビンスク (Chelyabinsk) 近郊に飛来した直径17 mの小惑 星によって甚大な人身・物損被害が発生して以来,小惑星の地球衝突に対する防災科学「プラネタリーディ フェンス」が,世界中で真剣に取り組まれ始めた.Heraは欧州宇宙機関 (ESA) が主導するS型小惑星 Didymosと衛星Dimorphosを探査する計画である.米国航空宇宙局 (NASA) のDART探査機によ るDimorphosへの衝突によって実践された史上初の軌道修正の効果を,Heraが現地観測によって定量 的に検証する.日本からも熱赤外カメラTIRIを提供して熱物性や組成の観測を行い,さらに小惑星科学 での貢献を通してHeraに参画する.

1. はじめに

小惑星が地球に衝突する危機から人類社会を守 る宇宙防災「プラネタリーディフェンス」が,太陽系探 査における新しい基軸として,全世界的に本格的に 始動した.これは,天文学・惑星科学の知見と宇宙探 査工学の技術を結集することによって初めて実現で きる,大規模自然災害に対する人類の新たな挑戦で ある.

史上初の国際共同プラネタリーディフェンス計画 AIDA (Asteroid Impact & Deflection Assessment) は、NASAのDART (Double Asteroid Re-direct Test) [1]とESAのHera [2]の連携によって実施される (図1). 2022年9月26日にDARTがS型小惑星Didymosの 衛星Dimorphosへの衝突 [3] と軌道修正に成功し たことが、地上観測による公転周期の変化から確認

1.宇宙航空研究開発機構 宇宙科学研究所
 2.前橋工科大学
 3.千葉工業大学 惑星探査研究センター
 4.会津大学 宇宙情報科学研究センター
 5.北海道教育大学 旭川校
 6.産業技術総合研究所
 7.東京大学
 okada.tatsuaki@jaxa.jp

された [4]. Heraは事後に現地を訪れ, DART衝突 後の軌道や自公転運動, 地形などを実測し, さらに 小惑星の物性や物質の調査を行う. その結果を用い て探査機衝突による小惑星軌道修正の効果を定量 化し,応用可能な技術として習得する. 取得した観測 データは惑星科学にとっても非常に貴重であり, 二 重小惑星の形成過程や, 惑星系の力学進化過程の 理解に役立つだろう. 本稿では, Heraの目的やミッ ション概要, 日本が提供する熱赤外カメラTIRIとそ の観測内容について紹介する.

2. 地球接近天体と プラネタリーディフェンス

2.1 地球への小惑星衝突

地球を含む太陽系の惑星は、46億年前に原始太 陽系円盤の中で固体微粒子の塵が集積し、合体・成 長を繰り返して成長し、やがて現在の姿になった. その力学成長過程では、多数の小型天体(微惑星) が形成され、衝突・破壊・再集積を繰り返してきた.地 球や月面、その他の惑星・衛星の表面に残る多数の 衝突クレータや、1994年のシューメーカー・レビー第 9彗星 (D/1993 F2 Comet Shoemaker-Levy 9)

図1: DART衝突後に二重小惑星の探査をするHeraと熱赤外カメラTIRI (原図©ESAを加工). Dは直径.

の木星衝突,大気中で発光する火球,地上に降り注 ぐ隕石や宇宙塵は,その過程が現在もなお継続して いることを示している.

太陽を廻る軌道が地球軌道と交差しており,将 来的に地球と衝突する危険性のある小惑星を,潜 在的危険小惑星 (PHA, Potentially Hazardous Asteroid) と呼ぶ. 1990年代半ば以降,地上望遠鏡 や軌道上の宇宙望遠鏡によるサーベイ観測が行わ れた結果, 2024年3月までに3.5万個以上の地球接 近天体(近日点距離が1.3 au以内で地球軌道に接近 する天体)が発見されている. その3分の2が直径140 m以下であり, その割合は年々増大している [5].

地球に衝突する天体の直径と衝突頻度の関係を 図2に示す.白亜紀末の,恐竜を含む地球上生命の 大絶滅の要因(諸説あり)とされる直径約10-20 km の小惑星の衝突頻度は10⁸年に1回と極めて低い.一 方,100年ほど前の1908年6月30日に起きた「ツングー スカ (Tunguska) 大爆発」は,直径50-60 mの小 惑星が地球大気を通過中に発生した衝撃爆風が原 因と推定される [6].東京都の面積に匹敵する2150 km²以上のタイガの森林が薙ぎ倒されたほどの破壊 力であり,仮に首都上空で発生したら亡国の危機と なり得る.また,2013年2月15日に百万都市チェリャ ビンスク (Chelyabinsk) の近郊に飛来した直径約 17 mの天体が大気通過中に生じた衝撃爆風によっ て、南北180 km,東西80 kmの広大な領域で影響 が出た [7].約1500名の重軽傷者や約4500件の建 物損壊の被害が報告され,実質的に初の小惑星衝 突による甚大な人身・物損被害となった.まさに小惑 星の衝突が危険な自然災害のひとつ,宇宙防災「プ ラネタリーディフェンス」として認知される契機となっ た.直径数10 mの小惑星の地球衝突頻度は数10年 から数100年に1回と推定される.今後100年以内に 地球に確実に衝突する小惑星は発見されていない が、このサイズの小惑星の90%以上が未発見である と考えられており、いずれ出現する可能性があること を忘れてはならない.

2.2 プラネタリーディフェンスの活動

プラネタリーディフェンスの主な活動要素は,1)地 球接近天体の探索と地球衝突の予知(天文学),2) 天体の構造や物性等の素性の理解(惑星科学),3) 天体の地球衝突を回避する技術の習得と準備(宇宙 工学),4)地球衝突時の環境学的・社会学的な災害 の種類と規模の推定(環境科学・社会科学),5)防災 活動に関する社会的・法的な整備(社会科学・法学),

図2:小惑星の直径と地球衝突頻度の関係 (Harris et al. (2015) [8] に加筆).

図3:探査機衝突時のイジェクタ噴出量による速度変化の差異.

表1: 探査機衝突による軌道修正効率の算出に必要なパラン	くータ.
------------------------------	------

探查機情報 (既知)	探査機質量・速度・硬さ 探査機衝突位置
天体情報	天体の質量・密度・重心位置・硬さ
(未知)	衝突痕サイズ・イジェクタ噴出量
	衝突後の速度変化・自転状態

など広範な分野に及ぶ.太陽系天体探査は2)惑星 科学と3)宇宙工学に深く関係する.

チェリャビンスク隕石のように事前検知されずに 地球に飛来する場合,衝突は回避できない.より徹 底した観測網の構築によって事前検知と衝突予知の 向上を図る (1) とともに,事前検知された場合の衝 突回避手段の確立と準備 (3),回避できない場合の 災害規模や被害の推定 (4) と避難・救済・復興への 国際的枠組みや社会基盤整備 (5)が必要である.図 2の衝突頻度と災害規模の関係から,10²年に1回以 上の頻度,かつチェリャビンスク隕石以上の災害規 模となる,直径数10 mの地球接近天体がターゲット になる.数mサイズの探査機を数km/sで衝突させ て軌道を微修正する方法が,地球衝突回避のための 現実的な手段と考えられる.

DARTは、まさにその探査機衝突による小惑星 軌道修正技術の実証が主目的であり、Dimorphos への衝突時に与えた力積に対する、軌道速度変化の 効率を検証・評価する必要がある。図3に示すように 軌道速度変化はイジェクタ噴出量に依存するため、 Heraの現地観測によって、表1に示すような天体質 量、イジェクタ発生量(衝突孔サイズや形状)、平均密 度、重心位置、天体の強度や内部構造などの情報を 知る必要がある。

3. Hera計画

3.1 DART + Hera = AIDA

DARTは、2013年のチェリャビンスク隕石によ る被災直後の2016年に設立されたNASAのプラネ タリーディフェンス調整局 (PDCO) による初号機 であり、Heraは2019年に設立されたESAのプラネ タリーディフェンス局 (PDO) による初号機である. DART衝突機とHera探査機が連携して実施する、 史上初の探査機衝突による小惑星軌道修正技術の 実証であるAIDAの概要を表2に示す、また、表3 に、Heraの探査対象である、両小惑星の特徴を整 理した.

DARTの衝突直前の撮像 [9] により, Didymos の形状・寸法が判明し (日陰部分は仮定を含む),回 転楕円体に近く,赤道付近に帯状に平坦な地形が 存在することが分かった. Dimorphosは衝突直 前の高解像度画像から,表層が岩塊で覆われている こと,さらに子機LICIACubeからの撮像によって [10],回転楕円体に近い形状(夜側もDidymosから の反射光で輪郭が撮像された)であることから、ラ ブルパイルであることが示唆される.

また,地上観測によって,衝突前後のDimorphos の公転周期が11時間55分から11時間22分へと33 分間(約4.6%)の短縮が確認された[4]. この軌 道変化量は事前の想定よりも大きく、イジェクタ噴 出量が想定以上、またはDimorphosの質量が想 定以下であった可能性がある.実際、地上観測で もLICIACubeからの観測でも大量のイジェクタの 噴出が観測され [10, 11], 等方的な成分に加えてク レータ光条のような非等方的な成分も確認されてお り、イジェクタ噴出量が想定以上だった可能性が高 い. また. 数か月以上に渡ってダストテイルが観測さ れ続け、Didymos周辺に岩塊が散在する様子も観 測されている. DART衝突時に周囲に飛散した岩塊 や岩石片がDidymos周辺に停滞しており、太陽放 射圧によってDidymos重力圏外に流出しているよう だ.S型小惑星Didymosの地上分光観測では衝突 後にやや青化しており [12], Dimorphosから噴出 したイジェクタがDidymosに衝突すると、宇宙風化 して赤化した表層が更新され、表層下の赤化してい ない新鮮な物質が露出したためかもしれない.

3.2 Heraの概要

3.2.1 Hera探査機と観測機器

Heraの目的を実現するために開発された,Hera 探査機の概要を表4に示す.Heraの観測機器の一 覧を表5に,Hera探査機全体とその上面パネル(+Z 面)の機器配置を図4に示す.Heraは3軸制御探査 機であり,全観測機器が上面パネル(+Z面)に搭載 され,同一方向を指向する.小惑星観測時には+Z軸 をいずれかの小惑星指向にし,データ伝送時には高 利得アンテナ(+X面)を地球指向にする.

以下に挙げる観測機器を連携して用いることで、 Heraの目的を達成することができる.

・光学カメラAFC:小惑星の形状モデル作成や地形 観測に使用する. Hera探査機の航法誘導制御にも 使用する.

・レーザ高度計PALT:近接時の正確な測距によって

表2:AIDAの構成 [1,2].

	DART	Hera
実施機関	NASA	ESA
打上	2021/11/24	2024/10
到着	2022/9/26	2026/12
実施内容	・小惑星に衝突	・小惑星近傍からの全球・局所観測
	・衝突前撮像	・子機からの詳細観測,着陸観測
	・子機からイジェクタ撮像	・自律航法誘導
6U 子機	• LICIACube	• Milani, Juventas
補記	地上望遠鏡による支援観測	JAXA が熱赤外カメラ TIRI を提供

表3:DidymosとDimorphosの特徴.

対象天体	Didymos (65803 / 1996GT)	Dimorphos (Didymos B)
直径 [m]	765 ± 15	151 ± 5
サイズ [m]	$851 \times 849 \times 620 (\pm 15 \times 15 \times 15)$	$177 \times 174 \times 116 \ (\pm 2 \times 4 \times 2)$
質量 [kg]	$5.4 \pm 0.4 \times 10^{11}$	$1.33 \pm 0.30 \times 10^9$
密度 [g/cm ³]	2.40 ± 0.30	2.4 ± 0.9
自転周期/公転周期 [hr]	2.2593 ± 0.0002	11.92 (衝突前) → 11.37 (衝突後)
極傾斜角 [°]	174 ± 20	
幾何アルベド	0.15 ± 0.04	0.15 ± 0.02
スペクトル型	S	S
近日点 [au]	1.1031	
遠日点 [au]	2.2753	
軌道長半径 [au]/[km]	1.6442	1.144 ± 0.070
離心率	0.38385	0.0247 ± 0.0002
軌道傾斜角 [°]	3.4079	169.3 ± 1.0
軌道周期 [yr]/[hr]	2.11 (=770 day)	11.3676

表4:Hera探査機の特徴 [2].

項目	Hera 探查機仕様
探查機重量	1150 kg (推薬込み), 667 kg (推薬無し)
探査機サイズ	1.6×1.6×1.6 m (本体), 11.5 m (太陽電池展開時)
発電量	1180 W (max)
通信	Xハンド(HGA, LGA)
姿勢制御	3 軸制御
推進系	RCS:10Nx8系統(主従),
	OCS:10Nx3系統(主従)
打上	SpaceX Falcon 9

図4:Heraの探査機 (上) と観測機器の配置 (下) (原図©ESAを加工).

重力場計測や表面凹凸の観測に使用する.

・熱赤外カメラTIRI:小惑星表層の輝度温度の昼夜 サイクルから熱物性、多色波長比から組成を導出する.
・多色分光カメラHS-H:25色フィルタ (665-975 nm)でケイ酸塩の鉱物組成,宇宙風化を調査する.
・電波科学:地上局と探査機間のX帯通信 (X-DST),探査機と2機の子機間通信(ISL, Inter-Satellite Link)を用いて探査機や子機の運動を解 析し、両小惑星の重力場や重力異常を算出する.
また、2機の子機JuventusとMilaniが搭載される.
・Juventus:表層下構造探査用のHFレー ダJURA, 微小な重力異常を検知する重力計 GRASS,表層に着地した際の反撥状態から反撥係

数を算出する加速度計とモニタカメラを搭載し、主に

小惑星の物性測定を行う.

 ・Milani:可視・近赤外のカメラおよび分光計をもつ ASPECT, 塵モニタVISTAを搭載し, 鉱物組成と その分布を調べる.

3.2.2 Hera観測目標

Heraの主な観測目標を以下に示す.表6にミッショ ン要求と観測目標,および関連する観測機器を示す. ・小惑星ダイナミクス:二重小惑星の公転運動や 自転の状態を,系全域を視野内に入れた連続観測 (TIRIなど)で追跡する.X-DST・ISLを用いたレン ジ・ドップラ計測によってHera探査機や子機の運 動を調査し,重力場や重力異常を調査し,両小惑 星の均質性・非一様性を推定する.AFCやTIRIの 高解像度画像から,衛星(周回する岩塊)や塵噴出 の有無を調査する.表層の摩擦・滑り・堆積状態(圧

機器名	機能性能
カメラ	1024×1024 画素のモノクロ画像, FOV: 5.5°×5.5°
AFC	2 台搭載, GNC 兼用
レーザ高度計	1-10 Hz 周期で測距,Z = 0.5-14 km, ⊿Z = 0.5 m
PALT	送信パルス : 波長 1.5 µm, 2 µJ, 2 ns
熱赤外カメラ	1024×768 画素の熱撮像, FOV: 13.0°×9.9°
TIRI	7-14 μm: 広帯域 1 , 狭帯域 6 波長
分光カメラ	2048×1024 画素の多色画像, FOV: 16°×8°
HyperScout-H	5x5 色モザイクフィルタ, 波長:665-975 nm
電波科学	X 帯通信機 (X-DST) によるレンジ・ドップラ計測 (R&RR),
X-DST, ISL	複数地上局との差分ドップラ計測 (DDOR)
	子機との通信 (ISL: Intersatellite Link) による重力計測
子機1	HF レーダ (JuRa), 重力計 (GRASS),
Juventus	加速度計,GNCカメラ,ほか
子機2	可視近赤外分光撮像(ASPECT)
Milani	ダストモニタ(VISTA)

表5:Hera搭載観測機器一覧 [2].

表6:科学目標と関連する観測機器 [2].

ミッション要求	高次プロダクト	関連機器
Dimorphos D	Dimorphosの軌道・自転	AFC, PALT, TIRI, RSE, GRASS, ISL
質量と	重力場・重力異常	AFC, PALT, RSE, GRASS, ISL
二重小惑星系の	衛星有無, 塵の噴出	AFC, TIRI, ISL, VISTA
ダイナミクス	非重力加速度	AFC, TIRI, RSE
全球的特徵·	形状・体積	AFC, PALT, TIRI
内部構造	内部構造・密度・空隙率	AFC, RSE, JuRa, ISL
表層特性	表面地形	AFC, TIRI, JuRa, ASPECT
	機械特性: 粒径, 安息角, 硬度, 摩擦	AFC, PALT, TIRI, JuRa, GRASS, GNC, ASPECT
	光学・熱物理特性	AFC, PALT, TIRI, HS-H, ASPECT, VISTA
	化学組成・宇宙風化	TIRI, HS-H, JuRa, ASPECT, VISTA
その他	地図作成・地形命名	AFC, PALT, TIRI, HS-H, ASPECT
	座標系	AFC, PALT, TIRI

密状態)を推定し、放出機構を解明する.TIRIに よる熱物理モデルから非重力効果による軌道進化 (Yarkovsky効果)や自転速度進化 (YORP効果, 主星との同期の場合はB-YORP効果)を調べる.長 期的には、地上観測の結果と比較する.

・形状・内部構造:不規則形状の小惑星の正確な体 積や密度の算出のため、AFCやTIRI (夜側観測も 含む)のデータを基に3D形状モデルを構築して、重 力と合わせて平均密度を算出する.また、レーダ観 測で内部の不均質性を確認し、均質構造モデル、表 層レゴリス+岩盤の2層モデル等で適切な解を推定 する.

・表層特性:AFCやTIRIの画像より全球の地形を 調査し、自然クレータの頻度分布から表層年代推 定, 岩塊サイズ分布から衝突破壊史, 傾斜角から自 転速度変化を推定する. クレータ直径/深さ比から 表層の硬度を算出する. 子機着地時の反撥から, 強 度・硬さを調べる. DARTクレータの衝突痕の形状 解析から, 表層物性 (密度, 空隙率, 反射率, 硬さ) を推定する. クレータ内外での物質の一様性・均質性 を調査するほか, 全球組成マップを作成する. 地域 や岩塊ごとの熱光学特性を調べ, 岩塊の稠密度を調 べる. 表層・地下物質の反射スペクトル形状の差異か ら, 宇宙風化の影響を調査する.

・地図作成:各観測機器による解析結果を比較可能 なように、座標系の統一と命名規則を行い、また各 機器データの共通プラットフォーム作成により、研究 を促進する.

図5:Heraミッションのスケジュール概要.

3.3 Heraミッションスケジュール

Heraのミッションスケジュール概要を図5に示す. Heraは2024年10月にSpaceX社Falcon 9で打ち 上げ,初期チェック後に機器較正を兼ねて地球や月 の観測を実施する.2025年3月には火星の重力アシ ストによる軌道変更を行うための火星スイングバイ の際に、火星と衛星Deimosの観測を行う予定であ る.Didymos到着までの巡行中には、TIRIでは宇 宙空間のダーク撮像、AFCやHS-Hでは標準星を用 いた較正を行う.2026年10月以降は地上からの電 波航法に加えて、画像中のDidymosと背景星の相 対位置に基づく光学航法を併用して、Didymosへ の接近運用を行う.2026年12月にDidymosから約 30 kmの距離に到着し、現地での観測運用を開始す る.到着後の観測運用フェーズ、期間、高度、および TIRIの観測内容を表7に示す.

・初期全球観測フェーズ(ECP):高度20-30 kmに 探査機を保持して,地形観測に有利な大きい太陽位 相角 (>40°)で東西・南北方向の長方形を描く軌道 を低速で進みながら6週間に渡って観測する.朝・北・ タ・南方向から(図6)順に二重小惑星全系の形状, 表面の地形,熱物性,組成,両小惑星の自転・公転 のダイナミクスの観測を行い,二重小惑星の全貌把 握を行う.この観測でHeraの観測目標のミニマムサ クセスは達成され,以後の観測運用計画の立案を行う.AFCとTIRIの高度20 kmでの画素あたり解像 度は2 m, 4.5 mである.

•子機分離フェーズ (PRP): 2機の子機分離運用を 行う.子機は約2か月に渡って周回し続け,自律的に 指向方向を変えて観測を行う計画である.

・高精度全球観測フェーズ (DCP):高度を8-20 km に下げて、ECPよりも2-3倍の空間解像度で全球 観測する. 観測の実施内容はECPと同様であるが、 ECPでは高位相角での観測のみであるのに対し、 DCPでは北・南方向に加えて南中方向からの低位 相角での観測も実施する. 太陽位相角を0°-75°まで 変えた位相角依存性のデータ取得にも有利である. AFCとTIRIの高度8 kmでの画素あたり解像度は 0.8 m, 1.8 mである.

・接近観測フェーズ (COP):Heraでは「はやぶさ2」 のような低高度で静止するホバリング方式は採用せ ず,常に一定の速度で移動する方式のため,最接近 位置では近接観測フライバイ運用中の短時間のみの 観測となる.Heraでは最接近距離の約4 kmで,赤 道付近通過,北半球側通過,または南半球側通過の 軌道途中で最接近し,DCPの2倍以上の高解像度の 観測を実施する.高度4 kmにおけるAFCとTIRI の画素あたり空間解像度はそれぞれ0.4 m,0.9 mで

運用フェーズ	期間 [week]	高度 [km]	TIRI観測の内容
ECP	6	20-30	・到着後の機器チェック
			・小惑星の物理的・物質的・力学的性質
			・二重小惑星全系の観測
PRP	4	20-30	 ・子機分離時の分離状況確認用連写撮像
DCP	4	8-20	・小惑星指向運用
			・衛星の形状・質量・密度の決定
			・地形・分光・物性観測
COP	6	4-22	・小惑星 or 衛星指向運用
			・高解像度の熱撮像・熱赤外多色撮像
			・DART 衝突痕の観測
EXP	6	1-TBD	・小惑星 or 衛星指向運用
			・衛星の超高解像度撮像
合計	26		

図6:Heraの観測軌道(ECPの場合).

ある. DART探査機が玄武岩質の硬い岩盤に衝突 した場合のクレータ径が約5 m程度と推定されてい たが. その場合でも調査可能な解像度である.

・実験観測フェーズ(EXP):COPよりもさらに距離1 km程度まで接近する挑戦的運用であり、主に DART衝突痕の詳細観測を目的とする.また、自律 光学航法誘導制御や、着陸などの工学的実験も検討 されている.

3.4 Heraに期待される成果

Heraは、プラネタリーディフェンスと惑星科学の 両面での成果が期待されている.プラネタリーディ フェンスで期待される主なものは以下である.

a)小惑星ダイナミクス:DART衝突後のDimorphos の公転周期に加えて公転軌道を正確に実測し,さら に両小惑星の歳差章動など自転運動の詳細も観測 し,二重小惑星全系のダイナミクスとして調査する. b) DART衝突痕: Dimorphos表面に形成された

衝突痕の形状や掘削深度を調べ, DARTで撮像し た衝突前の形状からの変化を調査する. 大規模な変 形が生じている可能性もあり, ラブルパイル構造の 小惑星の密度や岩塊の滑り・摩擦など破壊現象を明 らかにする.

c) 標的の質量・物性: Dimorphosの質量や密度,

熱物性 (岩塊中の空隙や岩塊の硬さ), 慣性能率を 調べ, 衝突標的としての諸元を調査する.

d) 軌道修正効率:上記情報を基に, DART衝突に よる軌道修正の効果を定量的に推算し, 探査機によ る小惑星の軌道修正技術として応用可能なモデル化 を進める.

e)探査機運用技術:小惑星への接近時や,小惑星 近傍における探査機の自律光学航法誘導制御の実 証や,子機を用いた観測技術,子機との通信リンクな どの技術実証を行う.

一方の惑星科学的として期待される成果としては 以下のものが挙げられる。

a)比較小惑星物性学: S型小惑星Didymos (直径 0.8 km) の物質・物性を調べ, C型小惑星Ryugu (直 径0.9 km) やB型小惑星Bennu (直径0.5 km), 小型 のS型小惑星Itokawa (直径0.3 km), Dimorphos (直径0.16 km) との比較から, 小惑星のスペクトル型 やサイズへの依存性に関する比較物性論的研究を 進める,

b) 観測史上最小天体の素性調査:小惑星Dimorphos は,探査機による直接観測史上最小の天体として物 質・物性を調べ,地球衝突危機のある小型小惑星の 特徴を知見として得る.「はやぶさ2」拡張ミッション で更に小型の小惑星1998KY26 (直径0.03 km) を 観測する際の比較としても重要である.

c) 二重小惑星の形成過程: 史上初の二重小惑星の ランデブ探査であり,両小惑星の組成・物性や構造 の比較,ダイナミクスの特徴から,Dimorphosの形 成過程として,別の小惑星を捕獲,高速スピンによる 分裂,衝突による完全破壊後に同時集積,衝突破壊 による飛散物から集積,のいずれに依るものかを推 定する.

d)微小重力下の衝突スケーリング則:DART衝突による人工の衝突痕の規模や物質変化を調べ、数値計算や地上の衝突実験、さらに「はやぶさ2」で実施した衝突実験との比較を通して、微小重力天体における衝突スケーリング則を構築する。

e) 非重力効果の算出: DidymosやDimorphos の熱モデルを構築して、熱放射による非重力加速 による軌道進化(Yarkovsky効果), 自転速度 進化(YORP効果, あるいは自公転同期の場合は B-YORP効果)を予測して、地上観測による長期的 な軌道進化・自転進化との比較を可能にすること. f) 宇宙風化:S型小惑星の長期露出部分と, DART 衝突の影響で更新され,内部から露出した部分を比 較し,S型小惑星における宇宙風化の理解に資する こと.

4. 熱赤外カメラTIRI

4.1 熱赤外カメラTIRIの概要

4.1.1「はやぶさ2」TIRによる小惑星熱撮像

熱赤外カメラの科学的有用性は、「はやぶさ2」搭載 の中間赤外カメラTIRによるC型小惑星Ryuguの観 測で実証された [13]. Ryuguが1自転する間に多数枚 撮像することによって小惑星の全球熱撮像を実施し. Ryugu表層物質の熱慣性が200-400 J kg⁻¹s^{-0.5}m⁻² (以下. tiu)であり、通常の炭素質隕石 (600-1000 tiu) [14]に比べて低熱慣性であることが分かった. 凹凸表面に斜め方向から日射がある場合、観測方向 が日照側か日陰側かによって熱放射量が強く影響を 受けるため、画素以下のラフネスを数値モデル化する ことにより[15]. Ryuguの熱慣性とラフネスの全球 分布を作成した [16]. 低熱慣性であることは、着陸 機MASCOTの熱放射計MARAでの観測結果とも 整合する [17]. 低高度に降下中のクローズアップ熱 撮像によってRyuguの個別の岩塊の熱慣性を調査 し、大部分の岩塊の熱慣性は全球平均と同程度であ るが、例外的に周囲よりも低温で、炭素質隕石と同 程度の熱慣性を示す岩塊 (Cold Spot) [13]や, 周囲 より高温で極めて低熱慣性を示す岩塊 (Hot Spot) も発見された [18]. 岩塊の多様性は、Ryugu母天体 内の深度による圧力差が関係する可能性がある.母 天体深部では、より圧密されてCold Spotの岩塊が 形成され、最表層では圧密が限定的で高空隙なHot Spotの岩塊が残存し、その後の母天体の衝突破壊 と再集積によって現在のRyugu表層に様々な深度 を起源とする岩塊が点在している. なお, Ryugu帰 還試料に対する0.1 mm大のスポット熱拡散率測定 ではCIコンドライトと同程度の熱慣性を示すが、ク ラック等の空隙が存在すると観測される低熱慣性を 示すことが確認されている [19].

項目	機器仕様	
検出器	Lynred PICO1024 Gen2	
有効画素数	1018 x 768	
視野角 [°]	13.0 x 9.9	
空間解像度 [°/pixel]	0.013°/pixel	
波長域 [µm]	広帯域:8-14	
	狭帯域(中心波長): 7.8, 8.6, 9.6, 10.6, 11.6, 13.0	
温度範囲 [K]	150-450	
絶対温度精度 [K]	< 3	
NETD [K]	< 0.1 (@300 K)	
撮像頻度 [Hz]	25	
ADC 階調 [bit]	14 (積算後 16 or 8)	
積算枚数	2^N (N=0, 1, 2,, 7)	
データ保存量[枚]	通常画像:2039	
	背景画像:8	
データ圧縮	JPEG-LS 方式	
機器寸法 [mm]	本体:W180 x D150 x H250	
	包絡:W230 x D190 x H260	
機器重量 [kg]	3.94 ± 0.05	
消費電力 [W]	16±1 (内部ヒータ除く)	

表8:Hera搭載熱赤外カメラTIRIの諸元 [21].

4.1.2 Hera 搭載TIRI

熱赤外カメラTIRIはJAXAを中心に日本で開発 するHera搭載の科学観測機器である. TIRIでは, 「はやぶさ2」TIR [20]の単バンドの熱赤外撮像と同 様の熱撮像用バンド (8-14 µm) に加えて多波長バ ンドでの撮像機能を備える. TIRIの機能・性能諸 元を表8. TIRIフライトモデルを図7に示す [21]. TIRIは検出器に1024×768画素のaシリコン非冷 却ボロメータを採用し、光学系にF/1で焦点距離75 mmの赤外レンズを搭載する. 初期全球撮像フェー ズECPで二重小惑星全系が視野内に含められる広 視野角 (13.0°×9.9°) と高空間解像度 (0.013°/ pixel) を有する. TIRIは8点のフィルタホイールを 搭載し、1点が閉(シャッタ閉と標準温度測定に使 用), 1点が広角フィルタ (8-14 um), 残りの6点が 7-14 µmに6波長帯の狭帯域フィルタを搭載する. TIRIの総重量は3.94 kg, 総消費電力は約16 W (フィルタホイール使用時)と小型軽量である. さら に、-120-150℃に及ぶ小惑星上の昼夜温度差を同 時に撮像できる広い温度検出域をもつ、TIRIでは、 画素間バイアスや装置特性, 周辺増光の影響を除去 するために背景画像 (宇宙空間のダーク撮像した画 像) との差分演算, S/N向上のための画像積算処 理,画像圧縮,パケット生成等の機上処理機能をも つ. また、一連の観測シーケンスの全画像を保存で きるメモリ領域を有し、マクロコマンド動作も可能で ある.

図7:振動試験中のHera搭載TIRIのフライトモデル.

4.2 TIRIの観測運用の特徴

4.2.1 TIRIの熱撮像

TIRIの熱撮像によって,視野内の撮像対象の輝 度温度を決定できるが,熱物性としては熱慣性 (バ ルク密度と比熱と熱伝導率の積の平方根)が重要で ある.物質が低熱慣性の場合,日照・日陰によって急 激に温度上昇・下降をする.一方で高熱慣性の場合, 日照時は熱が内部に浸み込み、日陰時は内部から 熱が浸み出すことによって温度変動幅が縮小し、か つ最高温度のピーク時刻が遅延する. この温度幅と ピーク遅延の温度サイクルの特徴から熱慣性を決定 する. TIRIでは1自転分の全球熱撮像を行うことに よって,小惑星の各地域の温度変動幅やピーク時刻 のずれから熱慣性を決定するが、実際には、表層ラ フネスの影響を考慮する必要があり、熱慣性とラフ ネスを同時に解く(解析ツールHEATにもラフネス モデルが実装される [23]). ラフネスの効果は太陽 光の入射角・射出角にも依存することから, ECPでの 観測では、朝・夕・北・南の各方向から1自転分の連続 熱撮像を実施し、それぞれ熱慣性とラフネスを算出 し. 比較する計画である.

熱慣性は温度依存性もあるため、ミッション期間 中の日心距離の変化(約1-2 au)に対して複数回観 測を行い、熱慣性の温度依存性を調べる計画であ る.また、DimorphosがDidymosの日陰に入る場 合や、Didymos表面がDimorphosの日影になる場 合には急速な冷却による熱応答を観測でき、熱慣性 の決定に有効である.小惑星表面に探査機の影が できる場合も同様に熱慣性を決定できる重要な観 測機会である.

4.2.2 TIRIの多色熱撮像

物質の組成をリモート観測で調べる多色分光観 測では、主に鉱物中のFeイオン存在度によって1 µm付近の吸収の中心波長と深さが変わる可視近赤 外が一般的に利用されるが、岩石の酸性度 (SiO₂ 存在度) や結晶化度に効く熱赤外域 (7-14 µm) も、 相補的で有効な観測手段である。特に、7-9 µm 付近の赤外吸収 (または熱放射率)のピーク波長 (CF:Christiansen Feature)の中心波長と、鉱 物の結晶化度による赤外透過率が変化することに よって熱放射率が低下する吸収深さの特徴 (RF: Reststrahlen Feature)が現れる.CF, RFのピー ク波長は一般に、酸性岩 < 中性岩 < 塩基性岩 < 超塩基性岩 (SiO₂存在度低下)の順に長波長側にシ フトする.鉱物でも 同様にSiO₂存在度低下によって 石英 < 斜長石 < 輝石 < 橄欖石 の順に長波長側 にシフトするため、化学組成に強い制約を与えること ができる [22]. 一方、RFの深さは主に結晶化度、即 ち非平衡で細粒 (観測波長より短い数µm以下)の マトリクスをもつか (岩石学的分類:3.0-3.9),より平 衡で粗粒 (観測波長より長い数10µm以上)のマトリ クスをもつか (岩石学的分類:> 4)によって差異が生 じる.

TIRIでは、これらの特徴を6波長バンドで調べる. 過去の事例では、LRO (Lunar Reconnaissance Orbiter) 搭載Divinerによる月面観測では、3バ ンドでCFピーク波長を算出し、月面組成マップを 作成した [23]. また、「はやぶさ2」の小型着陸機 MASCOT搭載の熱放射計MARAでは実質3バン ドでRFの特徴を抽出し、Ryuguの岩塊が水質変 成を受けたが、炭素質隕石に比べると脱水状態に ある物質であることを推定した [24]. TIRIでは CF用に短波長側から3バンド、RF用に長波長側 から4バンドを使用して組成情報を抽出する計画 である.

5. おわりに

Heraは小惑星 Didymosと衛星 Dimorphosの 二重小惑星惑星系にランデブ探査する計画であり, NASAのDARTによるDimorphosへの衝突実験 と連携することによって、史上初のプラネタリーディ フェンスの実証実験を行う. 日本からも「はやぶさ2」 での実績を基にして、熱撮像に多色熱赤外分光を追 加した熱赤外カメラTIRIを提供し、TIRIと他の観 測を合わせて小惑星の熱物性, 地形・地質学, 衝突 科学,小惑星ダイナミクスなどの科学研究を推進し, 日本が「はやぶさ」「はやぶさ2」で先導する科学的知 見も加えてHeraミッションに大きく貢献する.惑星 科学の知見と宇宙工学の技術が融合・発展すること で実現する宇宙防災ミッションにより、人類社会の潜 在的脅威である小惑星衝突の回避が実現されるこ と. また同時に惑星科学や宇宙探査技術の進展に 繋がることを期待する.

謝辞

本プロジェクトの実現にご協力いただいたESA HeraプロジェクトやESA・JAXA関係者,そして科 学的議論に参加して頂いた国内外の多数の研究者・ 技術者に感謝いたします.今回の執筆の機会を与え て頂いたゲストエディターのJAXAの吉川真さん, 本原稿を仕上げるにあたって詳細にわたって丹念に 査読して頂いた産業医科大学の大坪貴文さんに,こ の場を借りて感謝いたします.

参考文献

- Cheng, A.F. et al., 2018, Planet. Space Sci.157, 104.
- [2] Michel, P. et al., 2022, Planet. Sci. J. 3, 160.
- [3] Rivkin, A.S. and Cheng, A.F., 2023, Nature Communications 14, 1003.
- [4] Thomas, C.A. et al., 2023, Nature 616, 448.
- [5] https://www.iau.org/public/themes/neo/#defense
- [6] Robertson, D. and Mathias, D., 2019, Icarus 327, 36.
- [7] Popova, O. et al., 2013, Science 342, 1069.
- [8] Harris, A. et al., 2015, in Asteroid IV (P. Michel et al., eds.) U. Arizona, Tucson, 835.

- [9] Daly, R.T. et al., 2023, Nature 616, 443.
- [10] Dotto, E. and Zinzi, A., 2023, Nature Communications 14, 3055.
- [11] Li, J.-Y. et al., 2023, Nature 616, 452.
- [12] Polishook, D. et al., 2023, Planet. Sci. J. 4, 229.
- [13] Okada, T. et al., 2020, Nature 579, 518.
- [14] Flynn, G.J. et al., 2018, Chem. Erde 78, 269.
- [15] Senshu, H. et al., 2022, Intl. J. Thermophys. 43, 102.
- [16] Shimaki, Y. et al., 2020, Icarus 348, 113835.
- [17] Grott, M. et al., 2019, Nature Astronomy 3, 971.
- [18] Sakatani, N. et al., 2021, Nature Astronomy 5, 766.
- [19] Ishizaki, T. et al., 2023, Intl. J. Thermophys. 43, 51.
- [20] Okada, T. et al., 2017, Space Sci. Rev. 208, 255.
- [21] Okada, T. et al., 2024, 55th Lunar Planet. Sci. Conf., The Woodlands, TX, #1777.
- [22] Hunt, G.R., 1980, in Remote Sensing in Geology (B.S. Siegel and A.R. Gillespie eds.)Wiley, 5.
- [23] 出村ほか, under review.
- [24] Greenhagen, B.T. et al., 2010, Science 329, 1507.
- [25] Hamm, M. et al., 2022, Nature Communications 13, 364.

著者紹介

岡田 達明

宇宙航空研究開発機構宇宙科学 研究所

1996年,東京大学大学院理学系 研究科博士課程修了.博士(理 学).学術振興会特別研究員PD を経て,1999年よりJAXA宇宙

科学研究所助手,2006年より同准教授.2011年より 東京大学大学院理学系研究科准教授(兼任).専門 は惑星科学,惑星物質科学,惑星探査科学.日本の 月・惑星探査計画「はやぶさ」「かぐや」「はやぶさ2」 等に参画.「はやぶさ2」では中間赤外カメラTIRを主 導,帰還試料分析用赤外分光顕微鏡MicrOmega の共同PI.二重小惑星探査計画Heraプロジェクト チーム長および熱赤外カメラTIRIのPIに従事. 所属学会:日本惑星科学会,地球電磁気地球惑星圈 学会,JpGU,AGU,EGU,AOGS,COSPAR,国 際隕石学会

田中 智

宇宙航空研究開発機構宇宙科学 研究所

JAXA 宇宙科学研究所 助手, 同助教授,同准教授を経て2020 年より同教授.月内部を観測する 装置「ペネトレータ」の研究開発を

はじめ、月震計の開発、月・地球などの固体惑星の内 部構造の研究を行っている.現在は土星衛星タイタ ン離着陸探査「Dragonfly」に参加し、地震計提供 にむけた開発を行っている.

坂谷 尚哉

宇宙航空研究開発機構宇宙科学 研究所

2015年,総合研究大学院大学物 理学研究科博士後期課程修了. 明治大学物理学科助教,宇宙科 学研究所招聘職員,立教大学物

理学科助教などを経て、2022年4月から宇宙科学 研究所太陽系科学研究系特任助教.現在、将来の 惑星探査プロジェクトのミッション機器開発に従事. 所属学会:日本惑星科学会、JpGU

嶌生 有理

宇宙航空研究開発機構宇宙科学 研究所

2012年,名古屋大学大学院環 境学研究科博士後期課程修了. 2013年から岡山大学惑星物質研 究所にて隕石の表面化学分析に

従事. 2017年からJAXA宇宙科学研究所に入構し, はやぶさ2 TIRデータ解析, 超高速度衝突施設の運 用業務を経て, 2022年から宇宙科学プロジェクトの 支援業務に従事.

所属学会:日本惑星科学会, JpGU

石崎 拓也

宇宙航空研究開発機構宇宙科学 研究所

2021年,名古屋大学大学院博 士後期課程修了.博士(工学). 2015年に名古屋大学大学院工学 研究科博士前期課程修了後,日

本電気株式会社,名古屋大学大学院博士後期課程 を経て2021年より現職.現在は宇宙航空プロジェク ト研究員として地球外物質研究グループでリターン サンプルのための熱拡散率測定装置の開発に従事 している.

所属学会:日本熱物性学会,日本伝熱学会,日本機 械学会,JpGU.

荒井 武彦

前橋工科大学 工学部 生命工学 領域

2008年 総合研究大学院大学 宇 宙科学専攻 修了. 博士(理学). 国立天文台太陽観測所専門研究 職員, JAXA宇宙科学研究所プ

ロジェクト研究員,国立環境研究所 特別研究員な どを経て,現在,前橋工科大学 生命工学領域 准教 授,はやぶさ2やHera探査機搭載中間赤外カメラの データプロダクトの生成や解析ソフトウェアの開発に 従事.

所属学会:日本惑星科学会,日本リモートセンシング 学会

千秋 博紀

千葉工業大学 惑星探査研究セン ター

2001年,東京大学大学院理学系 研究科博士課程修了,博士(理 学).海洋研究開発機構,東京工 業大学,サイバー大学などを経て

現職.現在,数値計算による天体の熱進化モデル研 究に従事する一方で,火星衛星探査計画(MMX)で はレーザ高度計の主責任研究者(PI)を務める. 所属学会:日本惑星科学会,米国地球物理学連合

出村 裕英

会津大学 宇宙情報科学研究セン ター

1999年,東京大学大学院理学系 研究科博士後期課程修了,博士 (理学).旧宇宙開発事業団宇宙 開発特別研究員,会津大学先端

情報科学研究センター宇宙情報科学クラスター長を 経て、2019年より同大学宇宙情報科学研究センター 長を務める.火星探査機のぞみ可視カメラMIC,小 惑星探査機はやぶさ可視カメラAMICA,小惑星探 査機はやぶさ2中間赤外カメラAMICA,小惑星探 査機はやぶさ2中間赤外カメラTIR,月周回衛星かぐ や月面撮像分光機器LISM,Hera中間赤外カメラ TIRI,月極域探査分光カメラALIS といった深宇 宙探査プロジェクトの観測機器開発・運用に参画. 現在,深宇宙探査理工学,リモートセンシング,月惑 星探査アーカイブデータサイエンスの研究に従事. 所属学会:JpGU,情報処理学会,リモートセンシン グ学会,日本惑星科学会,日本測地学会,情報地質学 会,東京地学協会,The Meteoritical Society

関口 朋彦

北海道教育大学 旭川校

2001年,総合研究大学院大学数物 科学研究科天文科学専攻修了,博 士(理学).1999年よりEuropean Southern Observatory (ESO) Ph.D. student,国立天文台電波

天文学研究系研究員,国立天文台NRO研究員,日 本学術振興会特別研究員,国立天文台ALMA推進 室専門研究職員を経て2008年北海道教育大学旭川 校理科教育専攻准教授,2017年同校教授.現在,彗 星・小惑星・外縁天体など太陽系小天体の可視光-赤 外線-電波波長域での観測研究に従事.2001年に小 惑星イトカワ(研究当時1998 SF36)をESOチリ3.6 m 望遠鏡で中間赤外線観測し,小惑星の熱放射フラッ クスを日本で初めて計測.

所属学会:日本惑星科学会,日本天文学会,JpGU, アジア・オセアニア地球惑星科学連合,IAU,日本天 文教育普及研究会

神山 徹

産業技術総合研究所 デジタル アーキテクチャ研究センター 2012年,東京大学大学院地球惑 星科学専攻修了,博士(理学). 2012年より独立行政法人(現国 立研究開発法人)産業技術総合

研究所・特別研究員,研究員などを経て現デジタル アーキテクチャ研究センター・地理空間サービス研究 チームの研究チーム長.現在,地球観測から惑星探 査まで衛星搭載センサのキャリブレーションの研究 や,熱赤外センサによる観測画像を中心とするデー タ解析に関する研究に従事.専門は惑星科学,惑星 気象学,日本の惑星探査計画「あかつき」「はやぶさ2」 「MMX」等に参画.

所属学会:地球電磁気・惑星圏学会,日本惑星科学 会,JpGU,米国地球物理学連合,日本リモートセン シング学会

金丸 仁明

東京大学大学院理学系研究科 2020年,大阪大学大学院理学研 究科博士後期課程修了,博士(理 学).2020年~2022年,宇宙航 空研究開発機構・宇宙科学研究 所にて招聘職員として,はやぶさ

2ミッションの科学データ解析に従事し,小惑星の力 学進化の研究を行なった.現在は,日本学術振興会 特別研究員として東京大学にて,数値シミュレーショ ンを用いて小惑星の力学進化や熱物理の研究を行 なっている.

所属学会:日本惑星科学会, JpGU