ー番星へ行こう!日本の金星探査機の挑戦 その50 ~金星探査検討RG設立:「あかつき」に続く日本の 金星探査~

今井 正尭¹, 神山 徹², 安藤 紘基³, 佐川 英夫⁴, 佐藤 隆雄⁵, 原田 裕己⁶, 山崎 敦⁷, 佐藤 毅彦⁸, 今村 剛⁹

(要旨)金星探査機「あかつき」は2015年12月の軌道投入より現在まで、既に10金星年以上の長きにわた り貴重な科学データをもたらしてくれました.この膨大なデータは惑星気象学を中心に数多くの研究者の 手によって解析が進み、たくさんの科学成果が生まれています.一方で、世界的には2030年前後に金星を 目指す探査計画が複数採択され、我々日本の金星研究者内では「あかつき」に続く次期金星探査案を早 急に具体化するべきだという気運が高まっています.こうした背景から本年、将来の金星探査検討リサー チグループが設立されました.本稿では、これまでのリサーチグループ内での議論から、ポスト「あかつ き」探査において、金星にどのような科学的意義が存在するのか、実際にどういった形の探査提案があり 得るかを交えつつ、その検討の一端を紹介します.

1. 将来の金星探査計画にあたり

地球とほぼ同じ大きさでありながら地球と全く異 なる環境を有する金星では、大気の放射・力学・化 学・散逸と大気-地殻相互作用が地球とは異なる気 候システムを作り上げています.金星探査機「あかつ き」では、固体部分の自転速度を60倍も上回る速度 で大気が循環する「スーパーローテーション」など、主 に大気力学にフォーカスを当てた研究が進められて きました.一方で金星には他にも、二酸化炭素大気 の光化学的安定性、硫黄サイクル、エアロゾル物理、

京都産業大学理学部日本学術振興会特別研究員(PD)
2.産業技術総合研究所デジタルアーキテクチャ研究センター主任研究員
3.京都産業大学理学部助教
4.京都産業大学理学部教授
5.北海道情報大学経営情報学部講師
6.京都大学理学研究科助教
7.宇宙航空研究開発機構宇宙科学研究所助教
8.宇宙航空研究開発機構宇宙科学研究所教授
9.東京大学大学院新領域創成科学研究科教授mstk-a.imai@frontier.hokudai.ac.jp

アルベドを支配する未同定の紫外吸収物質, 揮発性 物質の宇宙空間への散逸, 大気と固体惑星の物質 交換など, 金星大気の存在そのものに関わる, 解き 明かすべき多くの課題が残されているのが現状です. 近年, 全球をエアロゾルで覆われているような, また は「スーパーローテーション」しているような系外惑星 が発見され, こうした系外惑星のアナログとしても金 星が注目されています. 我々が目指す金星の科学は, 金星という特定の天体の成り立ちの解明のみならず, 普遍的な惑星気候システムの理解にもつながるもの であるべきです.

1960-80年代の米ソの金星探査競争から四半世 紀以上を経て2000年代後半にリブートした金星探 査は,現在Venus Expressと「あかつき」によって 積み上げられた成果をまとめ,次の展開を図るフェー ズにあります.2021年になって米国と欧州で合わせ て3つの金星ミッション(VERITAS, DAVINCI, EnVision)が採択されました.さらにインドやロシ アによる金星探査計画も推進されており,2030年代 に世界が金星を目指す時代が来ようとしています.日 本においても近年の探査の成果を踏まえた金星科 学の新展開と,新たな探査の種となる工学技術開 発,そしてそれらを踏まえた複数の探査ミッション計 画立案に向けた議論が活発になっています.

これらの状況をふまえ,地球型惑星の多様性と普 遍性の理解を掲げつつ,金星科学の個別テーマに ついて議論の深化を図るため,本年将来の金星探 査検討リサーチグループ(金星探査RG)が設立さ れました.金星探査RGでは,新たな発想の探査を 可能とする工学技術の検討を進めることにより,科 学的成果と探査工学の発展を最大化するロードマッ プを描くことも活動の目的としています.続く各節で は,これまで金星探査RGで議論されている探査提 案を紹介します.本稿によって幅広い分野の研究者 の方々の興味を喚起し,より活発な議論のきっかけ となることを期待します.

2. 衛星間電波掩蔽観測

地球の気象でよく知られているように、大気中の 波や擾乱は、熱や運動量を輸送し惑星規模の循環 の形成を司ります.それ故に、惑星の大気循環の理 解には波や擾乱の性質を解明することが必要不可 欠です.しかし、地球以外の惑星では波や擾乱の実 態は殆ど理解されていないのが現状です.金星で は例えば、鉛直伝播する大気波動は超高速の東風 「スーパーローテーション」の形成・駆動メカニズムと して重要視されていますが、発見から半世紀経った 現在もこれら波や擾乱の効果について、定量的な評 価はおろかその全体像の定性的な理解も確立して いません、Venus Expressと「あかつき」による金 星周回軌道からのリモートセンシングや地上望遠鏡 による光学観測によって、波や擾乱の雲頂高度~70

kmにおける水平構造についての知見は徐々に増え ています.一方で、分厚い濃硫酸の雲で全球を覆わ れた金星は、それらの鉛直構造に関する知見が極め て乏しい状況が続いています.この問題を打開でき る一つの有力な観測手段が、気温の高度分布を高精 度(温度測定誤差~0.1 K)・高分解能(鉛直分解能 ~1 km)で測定できる電波掩蔽法です.

電波掩蔽法とは,探査機が惑星の背後に隠れる 時または出てくる時に地上局に向けて電波を射出 し,その電波の受信周波数が探査機の軌道運動と 大気の屈折によって変化する性質を利用して,気温 の高度分布を導出する観測手法です(図1).金星に おける電波掩蔽観測では,高度40-90 kmにおける 気圧・気温分布を導出できます [1].これまでの金星 ミッションでも電波掩蔽観測が実施されてきました が,地上局を受信局とする限り,探査機の軌道や惑 星の位置関係によって観測できる領域や機会が制限 されていました.そこでこの弱点を克服できる手段 として"衛星間"電波掩蔽観測を検討しています.

現状、ミッションの概念設計はほぼ完了し、金星 衛星間電波掩蔽観測 (Crosslink Radio Occultation for Venus Atmosphere using micro-satellites, CRO-VA) というミッション名のもと、100 kg級の親機と 6Uサイズ (12 kg)の子機2機による構成を軸に詳細 検討を進めています、親機には地球上の地上局と通 信するための通信システムのほか子機と通信するた めの通信システムが搭載され、一方の子機には子機 同士もしくは親機とのみ通信可能な通信機が搭載さ れます.この衛星間通信システムを用いて、衛星間電 波掩蔽観測を行う構想です。

通信周波数の変動を用いて観測を行う電波掩蔽 観測においては、安定なクロック源を持つことが重 要となります、親機は「あかつき」等で用いられてきた

図2:CROVAの親機(左)と子機(右)の外観図.

図1: 電波掩蔽法の概念図.

図3: (左)観測軌道と(右)4地球日で得られる観測点の経度-緯度分布.

超高安定発振器 (Ultra Stable Oscillator, USO) を搭載させる予定です、6Uサイズである子機には「あ かつき | 同等のUSOを搭載することはできないため、 超小型サイズのUSOを新規に設計・開発することが 工学面での重要課題のひとつであり、技術的な検討 が進んでいます.また、衛星間電波掩蔽の機会と観 測のカバー領域を最適化すべく軌道設計についても 解析が進んでいます、CROVAの衛星群はドッキン グされた状態で打上げられ、子機は親機が金星周回 軌道に入ってから分離され、それぞれが金星周回軌 道に投入されます、その際、親機と子機の相対速度 が大きい軌道に投入することで幅広い地点で観測が 可能となります. 現時点までの検討で得られた観測 軌道を図2に示します. 親機を近金点高度300 km, 遠金点高度4000 km, 子機を近金点高度300 km, 遠金点高度74000 km と定め、どちらも軌道傾斜角 は80°の同一平面上で金星を周回します。子機2機 は180度離れた位置まで位相制御され、周回周期は 親機と子機それぞれ2時間と27時間になっています. 図3は、上記の条件下で金星のスーパーローテーショ ンの周回周期である4地球日の間に得られる観測点 の経度-緯度分布を示していて、全部で179個(親-子: 165個,子-子:14個)データ点が従来の電波掩蔽観測 と違い短期間に全球的に分布していることが分かり ます

CROVAミッションの実現が金星大気科学にもた らすと期待される最大の特徴は以下の3項目です.

1) 雲層より下の大気の3次元構造

前述のように、電波掩蔽観測は高度40-90 km

をカバーできます. 金星の雲層はおよそ高度50-70 kmに全球的に存在するため,カメラや分光器など の光学観測では雲頂や雲底付近の高度しか観測で きず,特に雲層の下の観測的知見が殆どありません. CROVAでは雲層の下を集中的に観測できることか ら,発見的な研究が進む可能性が大いにあります.

2) 波や擾乱の空間・時間変化の全球モニタリング

近年,数値モデルを使った研究の進展が目覚ましく,大気運動に対する種々の波や擾乱の寄与が示されていますが,一方でその妥当性を評価できる観測 データが存在しません.CROVAで取得した全球的 な気温・気圧データから,様々な時間・空間スケール の波や擾乱を捉えることができれば,これまでの理 論的研究に新たな視点での検証が加えられます.

3) 硫酸蒸気混合比の全球分布

電波掩蔽観測では,受信強度の時間変化から大 気中の微量物質の混合比を測定することができ,金 星の場合は硫酸蒸気の混合比分布が分かります.金 星の雲は濃硫酸の液滴であるため,これらの全球分 布は金星雲物理の理解に役立ちます.近年,金星の 雲分布と大気波動の関連が数値モデルによって示唆 され,2)と合わせて雲と大気運動の関連性を紐解く ことが可能になります.

3. 大気化学探査

惑星大気を研究する上で大気の運動(力学)と ともに重要な視点となるのが、大気の組成や化学的 (酸化的・還元的)性質、そして大気内で生じている

図4: 金星大気化学の概念図. レビュー論文 [3] などを参考に作成. (観測未検証の反応も含む)

様々な化学反応についての理解です. 大気の組成や 化学的な性質は、その惑星大気がどのように形成 され、大気や地表環境がどのように変遷してきたの かを理解する鍵になります. 大気中に僅か (ppm~ ppbといった混合比) しか含まれない微量成分も. 大気中の放射バランスに関係し気温構造の決定に強 く影響します.また,大気中の化学反応には,太陽か らの紫外線や銀河宇宙線といった外的要因に駆動 される化学反応や、その惑星大気内部の微量成分 同士の反応 (触媒反応を含む), エアロゾルや雲粒の 生成に至る化学反応や粒子表面上での不均一反応 など、様々な種類が存在し、大気化学の理解を通し てその惑星大気が置かれている環境をより詳しく理 解することが可能です.近年では太陽系内の惑星の 大気化学の知見を系外惑星の理解に応用することも 試みられています [2].

金星大気では各高度において異なる種類の大気 化学が存在していると考えられています [3] (図4). 大きく区分すると,下層の高温大気中での熱平衡化 学,雲層の硫酸液滴の生成に関係する化学反応,雲 層よりも上空での太陽紫外線に駆動される光化学, そして超高層電離大気におけるイオン化学といった 具合に,主要な化学反応の種類が大気の高度によっ て異なります.また,化学反応に寄与する分子種に 注目すると,二酸化炭素(CO₂)や一酸化炭素を中心 としたCO_x反応サイクル,二酸化硫黄(SO₂)を中心と するSO_x反応サイクル,SO₂などから分離した硫黄が 同素体を作るポリサルファー(S_x)反応サイクル,塩素 酸化物ClO_x反応サイクル等々が挙げられます.

このような"大まかな特徴"は掴めつつある金星大 気化学ですが、その詳細は未だ多くの謎を残してい ます.中でも長年の議論の的となっているのが,(1) 金星CO₂大気の安定性問題と,(2)金星大気全体に おける硫黄の挙動です.(1)は,CO₂が紫外線によっ て一酸化炭素と酸素に光解離するのに対して,一酸 化炭素と酸素を直接再結合させてCO₂を復元させ る反応はスピン禁制反応となっているために,その 反応効率が著しく低いという問題です.この問題点 は1970年代に火星大気と同様にMcElroyら[4]に よって提起されました.この古典的な問題は,触媒 を介した別のCO₂復元反応の存在を仮定することで 回避できますが,実際に金星大気中でどういった触 媒反応が効いているのかは,CIO_xがその候補とし て提案されている[3]ものの,未だ観測的制約が有り ません.

(2)は、金星大気を特徴づける硫酸液滴の雲層 の生成消滅過程や、雲層に存在する未知の紫外線 吸収物質の謎 [5] とも深く関係する問題です。金星 大気中における硫黄は、SO₂, OCS, H₂SO₄, SO といった分子の形で存在します. これらの物質の 中で、SO₂は雲層上部における存在量が1980年代 のPioneer Venusの時代から2000年代のVenus Expressの時代にかけて長期的に観測されていま すが、その混合比が数百ppbからほぼゼロの間で大 きく変動していることが知られています[6]. この理 由として火山活動による大気中の硫黄総量の変動な どが提唱されていますが、未だ結論は得られていま せん. また, SO2は雲層の下では130 ppmという混 合比で存在するのに対して、 雲頂ではppbのレベル まで減少します. この雲層を挟んだ上下間でのSO? の急激な減衰は、最新の大気化学モデル[7]でも未 だ再現できていません、このことは、金星雲層におけ るSO、やS、の化学反応に関する我々の知識が不完 全であることを示唆しています. 雲層内部のS_xは未 知の紫外線吸収物質の候補の一つにも挙げられてお り、大気化学と雲の紫外アルベド変動の両者にとっ て重要な研究対象となります。

これまでの金星大気の化学的な研究は,主に周 回探査機に搭載された分光観測器や地上からの望 遠鏡観測によって実施されてきました[8].これらは いずれも金星からの放射(紫外線や赤外線,電波) を分光観測し,そのスペクトル内に金星大気中の分 子の吸収線を探るというリモートセンシングです.こ の手法の一番の難点は、CROVAについて述べた際 にも触れましたが、金星の分厚い雲層の内部や雲層 よりも下方の大気を観測することが出来ないという 点です.近赤外波長域の一部の波長帯では金星の 夜面で雲層よりも下の下層大気や地表面からの熱放 射を観測することが出来ますが(「あかつき」のIR1・ IR2カメラでも観測波長として採用されています), この波長帯で観測できる大気分子の種類には限り が有ります[9].雲層内部や雲層よりも下方の金星大 気化学探査をどのようにして実現するか?というの は、容易なことではないのですが将来的に取り組む べき金星研究の本質的な課題だと考えられます.

なお、今後実現する欧米の金星探査のうち VERITASとEnVisionはどちらかと言えば金星地 表面および固体惑星の探査に焦点が当てられてお り、大気微量成分の観測については飛躍的な進展 は期待薄のように思われます.DAVINCIのプロー ブ探査は金星大気中に降下しながら大気組成を質 量分析器で計測していくため、下層大気中に含まれ る火山由来の微量成分や分光観測では測れない希 ガスの定量などで大きな成果が期待されています. ただし降下プローブの宿命として、一地点、一時期の スナップショットが得られるだけである点は変わりま せん、今後、日本の将来の金星大気化学探査を立案 するにあたっては、これらの海外ミッションとのシナ ジーも重要な観点となることは言うまでも有りません.

4. 大気散逸探査

金星大気の散逸率の定量的な測定とその物理メ カニズムの同定は、地球型惑星の持続的な大気保 有条件を明らかにするという、太陽系のハビタビリ ティの理解と直結する重要課題です. Donahueら は、Pioneer Venusにより金星で観測された高い D/H比を、同位体分別を伴う長期的な水素散逸の 結果であると解釈し[10]、金星全面にならしたとき に深さ4.2-14 mに相当する量の水が過去に失われ たと提案しました[11]. しかしながら、近年のVenus Express観測からは、このような大規模な水の損失 は説明できないと示唆されています. 現在働いてい るイオン散逸メカニズムを過去の激しい太陽風状態 を考慮して外挿した酸素イオンの総散逸量は、高々 深さ0.02-0.6 m程度に相当する水の損失しか説明 できないのです[12].

一方で、金星大気からのイオン散逸率の定量的 な測定に成功したVenus Expressのイオン計測器 [13] (図5)をもってしても、その時間分解能(3分程 度)では散逸の物理メカニズムまでを同定すること が難しく、また、計測エネルギーの限界から脱出エ ネルギーを超えた全エネルギーのイオン散逸率の推 定値には大きな不確実性があることなど、まだまだ 課題が残されています、金星イオン散逸観測の次の ステップとして、熱的エネルギーから脱出エネルギー を超えるまでのイオン加速の現場を実測し、さらに 複数のイオン散逸プロセスを切り分けて、太陽放射・ 太陽風の変動に対するイオン散逸の応答を理解する ことが重要となります。

また、地球型惑星からの大気散逸は、次のような 観点から比較することが重要です。(1)太陽からの エネルギー入力の観点:太陽系ハビタブルゾーンの 内縁に位置する金星と、外縁に位置する火星の比 較;(2) 大気散逸における磁場の役割の観点:固有 双極子磁場を保持する地球,内部ダイナモ起源の 双極子磁場は現存しないが比較的強い地殻残留磁 化の残る火星,および固有磁場のない金星の比較; (3) イオン散逸を制約するボトルネックの観点:脱出 エネルギー律速の金星・地球と、大気供給量律速の 火星の比較[14]などです. 近年探査が進んでいる火 星と比べて、金星の調査は遅れており、大気散逸の 比較惑星学的な研究を進める上で将来必ず解決す べき課題となります. 火星では、中性大気・電離大 気・荷電粒子・電磁場の計測器パッケージを搭載し たMAVENミッションにより、大気散逸・超高層大気 の総合観測が行われ、多くの成果が得られています。 さらに、MMXでは散逸イオンの同位体計測が実施 され, NASA SIMPLExプログラムに採択された ESCAPADE計画では、火星圏で初の二機編隊プ ラズマ観測が実施される予定です.対して金星では, Venus Express以降,大気散逸過程の調査を掲 げた観測計画はほとんど見当たりません.これでは、 火星条件という一つの側面からのみ太陽系のハビタ ビリティを理解して満足することになってしまいます. 一部の領域・条件のみの調査から得られる限定的な 理解から脱却し、太陽系のハビタブルゾーンの全体

図5: Venus Express の観測により判明した金星周辺のプラズマ環境 [13].

理解, ひいては多様な系外惑星へ適用可能な生命生 存可能条件の普遍的理解を進めるためには,外側 の惑星環境探査と同時期に,内側の惑星環境-金 星圏--を調査することが不可欠なのです.

5. おわりに

「あかつき」の金星探査によって,日本国内には今後の惑星大気科学・惑星気象学を推進する確かな研 究土壌が育まれてきました.今後も日本がこの分野 で世界を牽引するべく,関係者一同さらなる努力を 続けていく所存です.

既に新たに設立された金星探査RGの枠組みを通 して,積極的な議論が進んでいます.本稿では紹介し きれなかった議論の中には,中層大気から大気散逸 領域をつなぐ熱圏の探査にむけたマイクロプローブ 探査,金星ラグランジュ点からの金星昼面/夜面の 望遠モニタリング観測,「あかつき」で捉えられた雷発 光と思しき突発的発光現象 [15] の追跡観測,など 多様な提案がなされております.またより魅力的な探 査の条件のひとつに複数の科学目標の達成がありま すが、こういった視点から個々の提案同士を絡めて 一つのミッション提案に昇華できないかという議論 も進んでいます.具体的な例としては、CROVAによ る電波掩蔽観測を大気散逸の観測に活用する話が あります.電波掩蔽観測では、電子密度に関する副 産物があり、もし磁力計をはじめとしたプラズマ計 測機器を探査機に搭載して金星の電磁環境を調べ ることができれば、金星の上層・下層結合にまでミッ ションの幅を広げられるでしょう.

2030年前後に予定されているNASAやESAによ る金星ミッションは、それぞれが非常によく検討され 大きな科学的インパクトが予想される計画となって います、「あかつき」に続く次期金星探査では、これ らとの親和性を考慮しつつ、今後も日本が世界から 一目置かれる存在であり続けるために、理学・工学的 なオリジナリティを見定めつつ具体的な探査提案を 目指していきたいと思います。

参考文献

- [1] 安藤紘基 ほか, 2017, 遊星人 26, 56.
- [2] Mills, F. P. et al., 2021, Space Sci. Rev. 217, 43.
- [3] Mills, F. P. et al., 2007, Exploring Venus as a Terrestrial Planet, Geophys. Monograph S. 176, 73.
- [4] McElroy, M. B. et al., 1973, J. Atmos. Sci. 30, 1437.
- [5] 今井正尭, 田口真, 2021, 遊星人 30, 173.
- [6] Marcq, E. et al., 2012, Nat. Geo. 6, 25.
- [7] Bierson, C. J. and Zhang, X., 2020, J. Geophys. Res: Planets 125, e2019JE006159.
- [8] Marcq, E. et al., 2018, Space Sci. Rev. 214, 10.
- [9] Arney, G. et al., 2014, J. Geophys. Res: Planets 119, 1860.
- [10] Donahue, T. M. et al., 1982, Science 216, 630.
- [11] Donahue, T. M. and Hartle, R. E., 1992, Geophys. Res. Lett. 12, 2449.
- [12] Persson, M. et al., 2020, Journal of Geophys. Res: Planets 125, e2019JE006336.
- [13] Futaana, Y. et al., 2017, Space Sci. Rev. 212, 1453.
- [14] Ramstad, R. and Barabash, S., 2021, Space Sci. Rev. 217, 36.
- [15] 高橋幸弘 ほか, 2021, 遊星人 30, 72.