一番星へ行こう! 日本の金星探査機の挑戦 その36 ~ AFES-Venusによる数値計算とデータ同化~ 樫村 博基¹, 杉本 憲彦², 高木 征弘³, 安藤 紘基³, 今村 剛⁴, 松田 佳久⁵, 榎本 剛^{6,7}, 大淵 済¹, はしもと じょーじ⁸, 石渡 正樹⁹, 中島 健介¹⁰, 高橋 芳幸¹, 林 祥介¹

(要旨)金星大気の全球的な流れを計算する数値モデル「AFES-Venus」とそれを用いた数値実験・データ同 化について紹介する.AFES-Venusは、金星大気の惑星規模筋状構造や周極低温域、大気安定度の地方時依 存性などの再現に成功している.AFES-Venusでは、高度55km付近に低安定度層を導入したことと、空間 解像度を高めたことによって、傾圧不安定の発達が計算されるようになった.数値実験により、傾圧不安定 の発達が、金星大気の現実的な風速・温度場の再現にとって重要であることが分かってきた.また我々は、 AFES-Venusを用いたデータ同化システムも開発しており、「あかつき」による観測を反映した現実的かつ 時空間的に偏りのない金星大気のデータセットの創出や、個々の観測の重要度評価による観測計画立案への 貢献も目指している.

1. はじめに

金星探査機「あかつき」は、2015年12月の金星周回 軌道への投入以降、多くの観測データをもたらしてお り、金星気象学の発展に貢献している.一方、我々は あかつきの金星到着以前から、金星大気の全球的な流 れを計算する数値モデル「AFES-Venus」を開発し、数 値シミュレーションによって金星気象の謎に挑み続け てきた.AFES-Venusは、雲や化学、地表面過程を省 略し、放射による加熱冷却を簡単化した力学モデルで ありながら、これまでの観測で示唆されてきた高度 55 km付近の大気の静的安定度が低い層(低安定度 層)を導入し、従来よりも高い解像度で計算すること

神戸大学 大学院理学研究科/惑星科学研究センター
慶應義塾大学 日吉物理学教室
京都産業大学 理学部
東京大学大学院新領域創成科学研究科
東京学芸大学 教育学部
京都大学 防災研究所
海洋研究開発機構 アプリケーションラボ
岡山大学 大学院自然科学研究科
北海道大学 大学院理学研究院
九州大学 大学院理学研究院
hiroki@gfd-dennou, org

によって、現実的な金星大気循環を再現することに成 功している.さらに、「地球シミュレータ」を用いた 高解像度計算によって、数百キロメートル規模の構造 が表現されるようになり、あかつきが撮影した金星の 詳細な雲模様との比較が可能となってきた.近年には、 観測データを用いて数値モデルによる計算を修正する データ同化の手法を金星大気で初めて適用することに 成功しており、今後より現実的な金星大気のデータセ ットを生み出すことを目指している.本記事では、 AFES-Venusについて解説するとともに、これまでに 得られた成果の一部を紹介する.

2. AFES-Venus

大気大循環モデル(GCM: General Circulation Model)とは、全球の大気の状態や運動を計算するた めの数値モデルである、大気大循環モデルは、大気の 運動と熱力学、状態方程式を計算する「力学コア」と 放射伝達や凝結過程などを近似的に計算する「物理過 程(と気象分野では呼ばれている)」から構成される. AFES (Atmospheric GCM For the Earth Simu-

図1: AFES-Venusで再現された平均東西風(濃淡)と平均子午面 循環(等値線). 等値線間隔は450[kg m⁻¹ s⁻¹]であり,実線 は時計回り,破線は反時計回りの循環を表す.北(南)半球 で破(実)線で表される逆循環は,傾圧不安定によるものだ と考えられる.本計算の解像度は水平格子間隔約0.75°× 0.75°,鉛直格子間隔約1 kmである.

lator)は、ベクトル型の大型計算機である地球シミュ レータに最適化された、地球大気用の大気大循環モデ ルであり、同機において非常に高い空間解像度の計算 が可能となっている[1,2].

我々は、AFESの力学コアに観測に基づく太陽放射 加熱とニュートン冷却で近似した放射冷却の物理過程 を加え、諸定数を金星の値に変更し、AFES-Venusを 開発した.ニュートン冷却とは、ある基準温度場から の差に比例する形で、温度場に強制を与える近似であ る.本モデルの特徴のひとつは、ニュートン冷却の基 準温度場に観測で示唆されている高度55 km付近の大 気安定度が中立に近い低安定度層を導入したことであ る.

また,従来よりも高い解像度で計算が出来ることも 本モデルの特徴である.とりわけ地球シミュレータ上 では,金星大気の全球シミュレーションとしては世界 最高レベルの空間解像度(水平約0.75°×0.75°間隔,鉛 直約1 km間隔)による計算を実現している.その上, 高解像度でのパラメータ感度実験を実施することも可 能であり,再現された諸現象のメカニズム解明に役立 っている.

金星では、大気全体が自転軸周りを高速で回転して おり、その速さは高度60 km付近で、自転の約60倍 にも達する.このような高速東西風は「スーパーロー テーション」と呼ばれ、その生成メカニズムは、金星

気象学最大の謎とされている。これまでの金星大気大 循環モデルを用いた研究は、静止状態からのスーパー ローテーションの生成を目的とすることが多かった. これに対して、我々は、スーパーローテーションの生 成に関しては一旦棚上げし、理想化した高速東西風を 初期値として与えることにした、このような設定で時 間発展計算をおこなうと、大気の状態は数金星日程度 (1金星日は117地球日)で準平衡状態になる、図1は 準平衡状態で得られた平均東西風分布と平均子午面循 環を示している。東西風分布は、これまでの観測と整 合的な結果が得られている.一方,子午面循環はこれ まで想像されていたような赤道から極まで延びる循環 ではなく、逆循環を含む複雑な形をしている.我々は. このようなシミュレーション結果を解析し、数値実験 をおこなうことで、様々な成果をあげてきた、以下、 その一部を紹介する.

3. 主要な成果

3.1 傾圧不安定

AFES-Venusによる数値シミュレーションは、金星 大気中でも傾圧不安定が生じうることを示した[3]. 傾圧不安定は、南北温度差に起因する大規模な流体の 不安定現象であり、温帯低気圧と移動性高気圧の生成 メカニズムとして、地球の中高緯度の気象において支 配的な現象である.我々は、これまで線形安定性解析 で示唆されていた金星大気の低安定度層付近の傾圧不 安定が、非線形数値シミュレーションでも実際に生じ ることを示した. さらに. 発達した傾圧不安定に伴う 角運動量や熱の輸送は、東西風分布や子午面循環の形 成に大きく寄与していることを示した. また. これま でに観測で報告されてきた雲層上端のロスビー波的な 構造は、傾圧不安定に伴うものである可能性が高いこ とも報告している[4]. パラメータ感度実験の結果から. 傾圧不安定の発生には低安定度層の存在と水平解像度 の高さが重要であることが分かった、すなわち、高度 55 km付近に低安定度層を導入した場合には傾圧不安 定が発生したが、低安定度層を導入せず一定の安定度 とした場合や低安定度層の安定度を高めた場合には傾 圧不安定は生じなかった. さらに、低安定度層を導入 していても、水平解像度が約6°×6°以下になると、傾

圧不安定が現れなくなることも確認された[5]. この 約6°×6°の水平解像度というのは、これまでの金星大 気シミュレーション研究では一般的なものであった. つまり、低安定度層を導入(あるいはより高度な放射 計算によって再現)すると同時に、ある程度の高い水 平解像度(約3°×3°以上)で計算することが、金星大気 シミュレーションにおいて重要であることを本研究は 示している.詳しくは文献[3,4,5]を参照されたい.

3.2 周極低温域の再現

1970年代の金星探査ミッション以降、金星極域の 上空65 km付近では、極がその周囲よりも高温になり、 極の周りを低温の領域が取り囲んでいるという不思議 な気温分布「周極低温域(cold collar)」が知られていた [6]. しかし、どのようにしてこのような気温分布が生 じ、維持されているのか、そのメカニズムは現在まで 未解明であった、そこで、AFES-Venusによる金星大 気シミュレーションの結果を調べてみると、図2のよ うに周極低温域が再現されていることが分かった[7]. 一方、太陽加熱の日周期変化成分を取り除き、東西一 様な太陽加熱を与えた数値実験では、周極低温域が現 れなかった。日周期変化成分の有無が異なる2つの実 験結果を解析したところ、太陽加熱の日周期変化が励 起する重力波(熱潮汐波)が、極上空の下降流を強め、 断熱圧縮によって極の大気を暖めていることが分かっ た、波が駆動する下降流と、それによって生じる昇温 現象は、地球大気でも成層圏の突然昇温として知られ ている、本研究は、金星大気中でも類似のメカニズム が大規模かつ恒常的に働いていることによって、極域 の温度が上がり、その周辺が相対的に低温となる周極 低温域という温度構造が形成されていることを示唆し ている.詳しくは文献[7]を参照されたい.

3.3 惑星規模筋状構造

図3aは、あかつきのIR2カメラ[8,9]が捉えた金星 夜面の波長2.26 μ mの赤外線画像である.この波長は CO_2 大気の赤外線吸収の窓領域にあたる.高度30 km 付近の高温大気から射出されるこの波長の赤外線は、 CO_2 大気を透過する一方、高度49 kmから57 kmにか けて存在する「モード3」と呼ばれている直径数 μ mの 雲粒からなる下層雲によって吸収される.すなわち、 図3aの明暗は下層雲の厚さを影絵の形で反映してい

図2: AFES-Venusで再現された周極低温域. 高度68 km付近の 気温を示している. 外側の円は緯度30°, 内側の破線円は 緯度60°を示す.本計算の解像度は水平格子間隔約3°×3°, 鉛直格子間隔約2 kmである.

る(明るいほど下層雲が薄く,暗いほど分厚い)と考え られている.図3aにおいて顕著な特徴は,南北両半 球におおよそ対称に位置する,高緯度から低緯度にか けて斜めに延びる巨大な明るい筋状の構造である.幅 数百kmで長さ約7000 km以上の細い筋が幾本か並ん でいる.このような構造は,あかつきIR2カメラが初 めて捉えたものであり,我々は「惑星規模筋状構造」 と呼んでいる.

AFES-Venusの高解像度シミュレーションは,惑星 規模筋状構造を再現することにも成功している[10]. 上述のような細い構造を表現するためには,非常に高 い水平解像度が要求されるが,我々は地球シミュレー タを用いることで,水平解像度が約0.75°×0.75°のシ ミュレーションを実現することができた.そこで計算 された鉛直流には,IR2カメラが捉えた筋状構造と類 似の構造が現れていた.図3bは計算された鉛直流の 高度60 kmにおける分布である.白色で示された下降 流の領域が筋状構造を成している.IR2カメラが捉え ている物理量とは異なるものの(雲過程はまだAFES-Venusには導入されていない),下降流によって下層 雲(モード3の雲粒)の濃度が下がることは十分に考え られるため,両者は整合的だと言える.

その後我々は数値実験を実施し、太陽加熱の日周期 変化成分の有無と低安定度層の有無が、惑星規模筋状 構造に与える影響を調べた.結果、太陽加熱の日周期 成分を取り除き、東西一様加熱とした設定でも、変わ

図3: (a) あかつきIR2カメラが波長2.26 µmで捉えた金星夜面画像(UTC 2016年3月25日7時33分に撮像). 画像中の金星ディスク 中心は経度246.0°, 緯度-9.1°であり, 金星あかつき間の距離は約10万kmである. 画像はエッジ強調処理を施しており, 金星ディ スクに沿って切り抜いている. 明暗模様は,下層雲の濃淡(明るいほど雲が薄い)を表すと考えられている. (b) AFES-Venus で計算された高度60 kmの鉛直風分布の一例. 画像(a)と同じ視点になるよう描画している. 強い下降流を白色で示している. 本計算の解像度は水平格子間隔約0.75°×0.75°, 鉛直格子間隔約1 kmである.

らず筋状構造は現れた、南北対称性も保持されていた. すなわち,惑星規模筋状構造の形成およびその南北対 称性の維持に関して、熱潮汐波は顕著な影響を与えな いことが分かった.一方.低安定度層を取り除いた実 験では、筋状構造は現れなかった、解析の結果、低安 定度層の有無に関わらず,高度65km付近には東西波 数1の赤道ロスビー波が生じるが、低安定度層がある 場合には、傾圧不安定によって高緯度に東西風ジェッ トが形成され、赤道ロスビー波の位相が南北に傾けら れることが示唆された. 南北に傾いた赤道ロスビー波 には、水平風擾乱の収束域が筋状に形成される. それ によって、筋状の下降流域が生み出されると考えられ る. さらに、高度55 km付近には赤道ケルビン波が存 在しており、上層の赤道ロスビー波とシアー不安定に よって結合している.この赤道ケルビン波との結合が, 惑星規模筋状構造の南北対称性を保っていることが分 かった. 詳しくは文献[10]を参照されたい.

3.4 熱潮汐波

金星大気中では雲層付近の太陽光吸収により熱潮汐 波が強く励起され、大気大循環に重要な役割を持つと 考えられている.あかつきの電波掩蔽観測により、高 度75 kmから80 km付近の赤道域では、日の出頃と日 の入り頃に大気安定度が極大となる東西波数2の地方 時依存性が見いだされた.一方,日の出頃の大気安定 度の鉛直構造は,高度65 kmから85 kmにおいて波長 10 kmから15 kmの波的な構造であった.これらの結 果は,金星大気の雲頂(約70 km)より上空では,鉛直 波長10 kmから15 kmの半日潮の熱潮汐波が卓越し ていることを示唆している.AFES-Venusではこのよ うな大気安定度の地方時依存性や鉛直構造も再現され ている.一方,AFES-Venusでは雲頂高度より上空で は平均東西風が高度ともに急速に減速している.上記 の半日潮とこの風速分布は,重力波の分散関係式にお いて整合的であることから,金星大気中でも雲頂上空 では平均東西風が急減速していることが示唆される [11].

また、AFES-Venusで計算された雲層付近の熱潮汐 波を解析した結果、その構造は緯度と高度に複雑に依 存していることが分かった.雲頂高度の低緯度では東 西波数2の半日潮が卓越して、太陽直下点付近の東西 風を10 m s⁻¹程度減速している.中高緯度では東西波 数1の一日潮が卓越し、昼半球から極を越えて夜半球 に向かう20 m s⁻¹から30 m s⁻¹もの南北風を伴う夜昼 間対流を形成している.これは、同高度の平均子午面 循環の南北風よりも10倍程度大きい.半日潮と一日 潮はともに高度60 km付近で励起され、上下に鉛直伝 播しているが、一日潮は高度50 kmから70 kmにかけ て位相が鉛直にそろっている.このため,一日潮が形 成する夜昼間対流は強く深いものとなっている.さら に、この夜昼間対流の上昇流域の形は、紫外線観測で 見られる暗い領域の形とよく似ている.すなわち、紫 外線吸収物質は夜昼間対流によって上方輸送されてお り、金星大気中の物質輸送において熱潮汐波が重要な 役割を担っている可能性が示された[12].

古典的理論[13]によれば、自転の遅い金星では、速 いスーパーローテーションと遅い夜昼間対流の共存し た状態と、遅いスーパーローテーションと速い夜昼間 対流の共存した状態が、どちらも実現可能であると考 えられる. AFES-Venusで見つかった大気スーパーロ ーテーション中に埋め込まれた夜昼間対流の存在は、 気象力学の観点からも非常に興味深い.

3.5 データ同化

我々は、AFES-Venusを用いたデータ同化システム の開発も進めている.データ同化とは、観測データを 用いて数値モデルによる計算を修正することで、より 現実的かつ時空間的に偏りのないデータセットを生み 出す手法である. あかつきの貴重な観測データを同化 することができれば、観測を反映した大気内部の運動 に関する情報が得られ、金星気象学の発展に寄与でき る. そこで我々は、AFES-Venus に局所アンサンブル カルマンフィルターを用いたデータ同化システムを構 築した[14]. これを検証するために、熱潮汐波を含む 数値シミュレーションの出力データを間引いて疑似観 測データとし、東西一様な太陽加熱を与える(熱潮汐 波が励起されない)設定のAFES-Venusと同化させる データ同化実験を行った.また、欧州の金星探査機 「Venus Express」の観測データ[15]を用いた同様の実 験も行った、その結果、両実験ともに(疑似)観測デー タに含まれる熱潮汐波が、東西一様加熱設定のAFES-Venusのなかで正しく再現されることが示された. こ れにより、開発したデータ同化システムが期待通りに 動作していることが確認され、金星探査機の観測デー タを利用したデータ同化が金星大気の流れを調べるの に有用であることも示された.

また我々は、データ同化システムにおける、観測値 個々の重要度を自動的に評価する手法(EFSO: Ensemble Forecast Sensitivity to Observations)[16]を実 装することにも成功している.この方法は、観測値を 同化しない計算を並行して実施しておき,同化した計 算結果と比較することで,個々の観測値が同化後のデ ータセットにどれほどの影響を与えたかを評価するも のである.これにより,個々の観測の重要度を網羅的 に調査することが可能になる.金星大気を理解する上 でどのような観測が有効かを知ることによって,あか つきの今後の観測や将来の金星探査の計画立案に貢献 することが出来る.

4. おわりに

以上の他に我々は、シミュレートされた金星大気中 における極渦の鉛直構造[17]や運動エネルギーの波数 依存性,短周期擾乱,平均子午面循環の構造なども解 析している.また、当初棚上げしていた、静止状態か らのスーパーローテーションの生成についても実験を はじめている、さらに、金星大気中の放射伝達計算や 硫酸蒸気の生成・輸送・凝結過程をAFES-Venus に 導入し、より高度な物理過程を含む現実的な金星大気 シミュレーションを実施する計画も進行中である. あ かつきの観測データを用いた本格的なデータ同化や EFSOにも着手している. AFES-Venus によるデータ 同化システムの基盤が整い、あかつきの観測データが 蓄積してきた今、データ同化を軸として、観測データ 解析とモデル開発の相互連携による両者の融合を実現 すべき段階に来ている. 我々 AFES-Venus チームは, あかつきの観測とより密接に連携し、金星大気モデル の精緻化をはかることで、金星大気の謎に挑んでいき たいと考えている.

謝 辞

本研究は、地球シミュレータ利用課題『AFESを用 いた地球型惑星の大気大循環シミュレーション』及び 『AFESを用いた金星・火星大気の高解像度大循環シ ミュレーション』と文部科学省ポスト「京」萌芽的課題 3「太陽系外惑星(第二の地球)の誕生と太陽系内惑星 環境変動の解明」の一環として実施しました. AFES-Venusの高解像度計算には、海洋研究開発機構の支援 のもと地球シミュレータを使用しました. 惑星規模筋 状構造に関する研究は佐藤毅彦氏(宇宙航空研究開発 機構;総合研究大学院大学), 佐藤隆雄氏(北海道情報 大学)と共同で実施しました.熱潮汐波に関する研究 はあかつき電波掩蔽観測チームと共同でおこないまし た.データ同化システムの構築及び実験は山崎哲氏(海 洋研究開発機構),神山徹氏(産業技術総合研究所)と 共同で実施しました.図の作成には地球流体電脳ライ ブラリを用いました.最後に,金星探査機あかつきに 関わる全ての方に感謝申し上げます.

参考文献

- [1] Ohfuchi, W. et al., 2004, J. Earth Simulator 1, 8.
- [2] Enomoto, T. et al., 2008, High Resolution Numerical Modelling of the Atmosphere and Ocean (New York: Springer)
- [3] Sugimoto, N. et al., 2014, J. Geophys. Res.-Planets 119, 1950.
- [4] Sugimoto, N. et al., 2014, Geophys. Res. Lett. 41, 7461.
- [5] Sugimoto, N. et al., 2013, Theor. Appl. Mech. Jpn. 61, 11.
- [6] Taylor, F. W. et al., 1980, J. Geophys. Res. 85, 7963.
- [7] Ando, H. et al., 2016, Nat. Commun. 7, 10398.
- [8] Satoh, T. et al., 2016, Earth Planets Space 68, 74.
- [9] Satoh, T. et al., 2017, Earth Planets Space 69, 154.
- [10] Kashimura, H. et al., 受理済, Nat. Commun.
- [11] Ando, H. et al., 2018, J. Geophys. Res.-Planets 123, 2270.
- [12] Takagi, M. et al., 2018 J. Geophys. Res.-Planets 123, 335.
- [13] Matsuda, Y., 1980, J. Metor. Soc. Japan 58, 443.
- [14] Sugimoto, N. et al., 2017, Sci. Rep. 7, 9321.
- [15] Kouyama, T. et al., 2013, J. Geophys. Res.-Planets 118, 37.
- [16] 山崎哲 ほか, 2018, 平成29年度「異常気象と長期変動」 研究集会報告, 45.
- [17] Ando, H. et al., 2017, J. Geophys. Res.-Planets 7, 1687.