日本惑星科学会誌 遊・星・人

第24巻 第4号

目 次

卷頭言 上野 宗孝	
月内部のレオロジー構造から考察する月震の発生メカニズム 東 真太郎, 片山 郁夫	318
Dawnが照らす惑星誕生の鍵:ベスタとHED隕石 山下 直之	
系外惑星「遠い世界の物語」その7~ 原始惑星系円盤観測から探る系外惑星~ 金川和弘	
一番星へ行こう!日本の金星探査機の挑戦 その25 ~搭載機器5年越しの覚醒~ 山崎 敦,山田 学,福原 哲哉,大月 祥子,田口 真,岩上 直幹,その他2名 あかつきプロジェクトチーム	339
遊星百景「私のお気に入りの地形」その2~Baltis Vallis~ 押上 祥子	342
研究会開催報告「衛星系研究会2015:衛星系と噴火現象」 谷川 享行,木村 淳,関根 康人,倉本 圭,大槻 圭史,田中 秀和,奥住 聡	
「iSALE 講習会」参加報告 脇田 茂	
第8回月惑星探査データ解析実習会を終えて 本田 親寿,巽 瑛理,昆 憲英,平田 成,出村 裕英,小川 佳子,北里 宏平 第8回月惑星探査データ解析実習会世話人一同	348
新刊書評 佐々木 貴教	351
JSPS Information	

Contents

Preface	M. Ueno	317
Mechanism of moonquakes inferred from rho moon interior	cological structure of S. Azuma and I. Katayama	_ 318
Dawn illuminates the key to the birth of plan meteorites	ets: Vesta and HED N. Yamashita	_ 326
Tales of distant exoplanet worlds (7) — Extra protoplanetary disks —	asolar planets in K. Kanagawa	332
Road to the first star: Venus orbiter from Jap awaken after 5 years of sleep — A. Yamazaki, M. Yamada, T. Fukuhara, S. Ohts and Akatsuki project team	pan (25) — The cameras uki, M. Taguchi, and 3 authors,	339
My favorite topography (2) — Baltis Vallis –	- S. Oshigami	342
Report of Workshop on Satellite Systems 201 T. Tanigawa, J. Kimura, Y. Sekine, K. Kuramoto	5 , K. Ohtsuki, and 2 authors	343
Report of iSALE shock physics code worksho	op in Chiba, Japan S. Wakita	346
A report on the 8th school of lunar and plane analyses C. Honda, E. Tatsumi, K. Kon, N. Hirata, H. Dem and Executive committee of the 8th school of lu data analyses	etary exploration data nura, Y. Ogawa, K. Kitazato, nar and planetary explanation	348
Book review	T. Sasaki	351
JSPS Information		352

卷頭言

マネージメントと言う言葉がもてはやされている. 宇宙開発は, 組織とプロジェクトのマネー ジメントが特に重要となる分野である. 昨年から, 世界の宇宙機関のプロジェクトマネージメ ントとシステムズエンジニアリングをとりまとめる委員会の議長をつとめているが, 個々のマ ネージメントプロセスについては, 宇宙機関という組織においても, プロジェクトチームと言 う単位で見ても, その置かれた境界条件によって異なるものである. このため, 単一の宇宙機 関の中でも分野ごとに多様性を有する. 一つの組織において多様性を包含する事は, 組織とし てのマネージメント上の困難を生じ, 組織としての包容力を必要とするが, 国家や組織におい て多様性を内在する事こそが, 強い持続性において本質的に重要である(例えば, 『ローマ人の 物語(塩野七生)』, 『文明の衝突(S. P. Huntington)』).

異なる環境に置かれている事から、宇宙機関ごとに必要な役割も当然異なってくる. 欧州と 米国そして日本では、大学の組織としてのあり方、宇宙予算の考え方、宇宙に関わる企業の実 力、安全保障分野における開発の考え方、に大きな違いがあり、ESA、NASA、JAXAでは必 要とされる役割が自ずと異なるものとなる. また外的条件は時代とともに常に変化するもので あり、それに呼応して行く必要がある. 社会の要求に応えて組織の役割を見直して行くことの 重要性は、営利企業に限った話では無い. 民間事業者では、自分たちが良いと思ったことを続 けていても、それが社会から必要とされなくなった時点で淘汰されると言うメカニズムが働き、 社会的な健全性が最低限担保されるのに対して、単一の宇宙機関においてはこのようなメカニ ズムが存在しない.

さて、宇宙科学研究所はどうであろうか.宇宙科学研究所がこれまで行ってきたやり方は、 世界のどの宇宙機関と比較しても、極めてユニークである.さらに組織としての強みと弱みは 常に物事の表裏をなし、一方だけを変化させる事も不可能である.しかし、自らへの問いかけ は怠ってはいけないのである.宇宙科学研究所の、これまでの進み方については、例えば田中 靖郎先生が2013年のAnnual Review of Astron. & Astrophs.の巻頭言として極めて格調の高い 文章を書かれている.

上野 宗孝(宇宙航空研究開発機構・宇宙科学研究所)

月内部のレオロジー構造から考察する月震の 発生メカニズム

東 真太郎¹, 片山 郁夫²

2015年8月9日受領, 査読を経て2015年9月9日受理.

(**要旨**) アポロ計画で設置された地震計によって月にも地震(月震)が起きることがわかっている. 月震は発 生領域や発生メカニズムによって, 浅発月震, 深発月震, 熱月震, インパクトによる月震に分類されており, 我々はこの月震の中でも深さ約800-1200 km付近で起きる深発月震について, 月内部のレオロジー構造とと もに考察した. 月内部の温度構造から考察されるレオロジー構造から, 深発月震は明らかに塑性変形領域で 発生していることがわかった. 通常は破壊や滑りが起こらない塑性変形領域で深発月震が起こるメカニズム を, 地球で起きる地震の発生メカニズムのモデルを参考に考察した.

1. はじめに

1959年ソビエト連邦の無人探査機ルナ2号が月に訪 れ、1960年代のアポロ計画によって人類が月に降り 立ってから、我々は月に関する多くの物理的・化学的 情報を得てきた。特にアポロ11号が地震計を初めて 設置し、続いてアポロ12号、14号、15号、16号が地 震計を置き,8年以上にわたって弾性波の観測が行わ れることで月の内部構造に関する理解は大きく前進し た.まず月にも地震が起きること(地殻変動が起きて いる). 月の内部は分化しており地殻とマントルが存 在すること(核の存在、その大きさについてはまだ議 論がある),月の地殻は斜長石,マントルは地球と同 様に苦鉄質鉱物(かんらん石や輝石)が主成分であるこ となどが月震データからも支持されている(reviewed by [1]). このように月震から様々な月の内部について の知見が得られたが、それらの情報を我々に与えてく れる月震の発生メカニズム自体についてはいまだに議 論がある.これまでの月震についての先行研究では, 主に震源パラメーターを解析することで議論がされて きた(例えば[2,3]). 震源パラメーターは震源メカニ ズムを考察する上で欠かすことができない情報であり、 この震源パラメーターに基づく議論から、マグニチュ ード、応力降下量、断層面積、すべり量などの重要な 報告がされてきた。例えば、深発月震については発生 領域が深く、その場の高い圧力に対して、非常に小さ なマグニチュードと応力降下量(~0.01-0.1 MPa)が推 察されており(例えば[2, 3, 4])、一般的に地球の浅い 部分で起きているような地震とは異なるメカニズムで 起きている可能性が示唆される。

月震は発生メカニズムや発生領域,観測された波形 によって分類されている(例えば[5]).一つは比較的 月の浅い部分(50-200 km)で発生する浅発月震である. この浅発月震を引き起こすトリガーは未だ謎の部分が 多いが,発生メカニズムについては地球の比較的表層 部分で起きている地震と同様,岩石の摩擦や破壊によ って起きていることが予想される(後述).そして月の 半径1737 kmに対して,約800-1200 kmという深い所 で起きる深発月震,これについては公転周期や秤動か ら潮汐力がトリガーとなっていることが先行研究から 示唆されている(例えば[6]).他にも隕石などのイン パクトによっておきる月震や,月の昼と夜の温度差に よって発生する熱月震などがある.本論では特に深発 月震に焦点を当てて,そのメカニズムについて検証す る.

^{1.} 東京工業大学地球生命研究所 2. 広島大学大学院理学研究科地球惑星システム学専攻 shintaro, azuma@elsi. jp

2. 月内部のレオロジー構造

地震や月震の発生メカニズムを考察する際. 惑星内 部のレオロジー構造を検証することが有力な手段とな り得る、月のレオロジー構造を検証する前に、レオロ ジー構造とは何かについて少し触れておく、岩石(鉱 物)の変形挙動は温度、圧力、含水量などによって変 化する[7-9]. 比較的温度が低く浅い領域では岩石は摩 擦すべりや破壊(脆性破壊)によって歪みを解消する。 この領域では、岩石の破壊強度は垂直応力(圧力)に依 存し、鉱物の種類による違いはほぼ見られない[10] 一方惑星の深い領域では温度と圧力は上昇し、それに よって岩石の変形挙動は脆性破壊から塑性変形へと遷 移する。この塑性変形領域では特に温度に強く依存し、 高温になるほど岩石の強度は減少する。他にも塑性変 形領域では、変形強度は鉱物によって大きく異なる、 結果として、惑星内部には化学的層構造の他に力学的 層構造が生み出され、これをレオロジー構造と呼んで いる[11, 12].

月内部のレオロジー構造を検証する際、月内部の温 度構造を見積もる必要がある.これについては先行研 究において観測された熱流量などから推察されている 温度構造を用いる[13, 14](図1). 圧力については、地 殻の密度を3000 kg/m³, マントルの密度3300 kg/m³, モホ面の深さを60 kmに設定し[13], 上載岩圧を計算 した. (モホ面の深さについては2000年以降の解析結 果からは、より薄い地殻(30-40 km)が示唆されてい るが[15]、月のレオロジー構造に関して結果は変わら ない. 月の浅い部分では十分に温度が低く, 脆性破壊 が支配的であり、物質の種類に依存しないBverleeの 法則[10]で計算されるためである。)上記の温度・圧力 構造を基に、脆性破壊領域はByerleeの法則を用いて 強度の計算を行い[10]、塑性変形領域においては流動 則を用いて計算を行った。特に地殻については斜長石 の流動則[16]を適用し、マントル部分についてはかん らん石の流動則[9]を適用した. 歪速度については不 確定なので10⁻¹⁴ s⁻¹と10⁻¹⁹ s⁻¹の二通りの歪速度を仮定 し計算を行った、そして流動則について、一般的には 高温の岩石変形実験から得られたベキ乗則が用いられ るが、最近の研究で比較的低温側では転位滑りが律速 するPeierls型の流動則が支配的になることが明らか

になっている[17-19]. 今回このPeierls型の流動則も 取り入れ[18],最も強度の低いメカニズムが全体の変 形を支配するとして月内部のレオロジー構造を計算し た. それと月内部にはこれまで考えられてきたよりも 水が存在することがサンプルリターンされた岩石の含 水量測定やLCROSS計画によって明らかにされてき たが,深部についてはまだ明らかになっていない. そ のため今回は月内部がドライ(含水量0)であると仮定 して強度の計算を行った.

上記のような計算から得られた月内部のレオロジー 構造は図2のようになる.比較的浅い部分の脆性破壊 領域では,圧力に依存するため深くなるにつれて強度 は増加していく.しかし,あるところで変形挙動は塑 性変形へと遷移し(BDT; Brittle-ductile transition), 温度が増加するにつれて強度は減少していくのが見て とれる.このレオロジー構造と月震の発生領域を対応 させて考察すると,浅発月震は主に脆性破壊領域で起 きていることから摩擦滑りや破壊によって起きている ことがわかる.しかし,月にはプレートテクトニクス や火成活動等は現在確認されていないため,浅発月震 のトリガーについては謎の部分が多い.一方で深発月 震の発生領域は深さ800-1200 kmであることから,明 らかに塑性変形領域で発生していることがわかる(図 2).一般的には塑性変形領域において,岩石は歪みを

図2:月内部のレオロジー構造.地殻とマントルの強度をそれぞれ斜長石[16]とかんらん石[9,18]の流動則から求めた.このとき最も強度の低いメカニズムが全体のレオロジーを支配すると仮定し計算した.歪速度は10⁻¹⁴ s⁻¹(実線)と10⁻¹⁹ s⁻¹(点線),地殻の厚さを60 km[13]とした.

塑性変形によって解消するため、摩擦滑りや破壊は起 きない.なぜ深発月震はそのような深い塑性変形領域 で起きているかは、地球で起きる深発地震と比較・考 察することによってヒントが得られるかもしれない.

3. 月震の発生メカニズムの考察

月内部のレオロジー構造を計算することによって, 深発月震は塑性変形領域で起きていることがわかった. 塑性変形領域で深発月震が起きるメカニズムについて は,地球で起きている深発地震の発生メカニズムにつ いての先行研究を参考に考察する.地球でも深発地震 が起きており,その発生メカニズムについてはまだ議 論があるが,いくつかのモデルが提案されている.一 つは相転移によって滑りが引き起こされるモデル (transformation faultingモデル)[20]や,断熱不安定 によって滑りが引き起こされるモデル[21,22],そし て含水鉱物のアモルファス化によって不安定が引き起 こされるモデル[23]などが提案されている.含水鉱物 のアモルファス化によって地震が引き起こされるモデ

図3:月の温度圧力構造[13, 14]と地球の上部マントルにおける 鉱物構成[37]. OI:かんらん石, Opx;斜長輝石, Cpx;単 斜輝石, PI;斜長石, Sp;尖晶石(スピネル), Gt;ざくろ石. 文献[37]図3から改変.

ルや相転移によって引き起こされるモデルは、温度と 圧力の定常的な変化を必要とし、沈み込みプロセスの 存在しない月に応用するのは困難に思える.特に相転 移のモデルに関しては、月内部の圧力構造を考察した 際. 深発月震の発生領域(深さ800-1200 km, 圧力約 3.5-4.5 GPaに相当)に対応する鉱物の相転移は考えに くい. 例えば、オリビン-スピネル相転移の起きる条 件と比べて、深発月震の起きている領域の圧力は小さ すぎるし、スピネルーガーネット相転移を考えたとし ても深発月震発生領域の圧力は高い(図3). Weber et al.(2009)[24]では、グリッドサーチ法を深発月震のデ ータに対して行い、深発月震の発生が潮汐力による垂 直応力と剪断応力の線形結合により説明できることか ら、相転移が深発月震の原因である可能性を示唆して いるが、その相転移する鉱物については言及できてい ない. 断熱不安定[21, 22]によって滑りが引き起こさ れるモデルというのは、ある岩石の一部に変形が集中 することを考える、その部分は変形によって加熱され、 温度が上昇し、より変形が進む、その変形が進んだ箇 所の温度はさらに加熱され…といったように正のフィ

ードバックがかかる.結果として変形の局所化(応力 集中)に伴う温度上昇によって部分溶融が起きること で、その部分の強度が著しく減少し、部分溶融してい る箇所が断層の役割を果たすことで滑りが起きるとい うモデルである.このモデルであれば、プレートの沈 み込みプロセスの無い月でも潮汐力によって変形の局 所化が起きれば実現できそうである.しかし問題点も あり、このモデルを実現するには、変形による温度上 昇が熱拡散を上回ることと(断熱変形)、その温度上昇 に伴う強度の減少が変形による加工硬化を上回る必要 がある(例えば[25,26]).唐戸(2000)[25]やKarato et al(2001)[26]で、この断熱不安定現象が起きる条件や、 その計算方法などについて議論されているのでそちら を参照してほしい.結論としては、まず断熱変形の条 件は、

$$\frac{\dot{\varepsilon}L^2}{\kappa} > 1$$
 (1)

と表すことができ(ε:歪速度, *L*:物体の大きさ, κ:熱 拡散率),かつ温度上昇による物質の軟化が加工硬化 を上回り不安定現象が起きる条件は,

$$\Theta = \frac{H^* \sigma \varepsilon}{nhRT^2 \rho C_n} \beta > 1 \quad (2)$$

と書ける(σ; 応力, ε; 歪, H^{*}; 活性化エンタルピー, n; 応力指数, h; 加工硬化に関するパラメーター, R; 気体定数, T; 温度, ρ; 密度, Cp; 比熱). βは力学 的エネルギーを熱に変換する際の効率を表すパラメー ターであり,以下のように書ける.

$$\beta = 1 - \exp\left(-\frac{\dot{\varepsilon}L^2}{\kappa}\right)$$
(3)

断熱不安定によって滑りが起きるには、これら式(1) と(2)を同時に満たす必要がある.つまり変形速度が 大きく(式(1)),比較的低温(式(2))でなくてはこの現 象は起きない.まず深発月震の起きている領域につい て断熱変形(式(1))が起こりえるかを考えてみる.例 えば、物体の大きさを0.1-10 kmと仮定し、マントル 物質の熱拡散率 $\kappa = 10^{-6} \text{ m}^2/\text{s}$ [27]を代入すると、歪 速度 $\epsilon \sim 10^{-14}$ -10⁻¹⁰ s⁻¹を得ることができる.しかし、 太陽、月、地球の潮汐によって生み出される典型的な 応力の値は、深発月震の起きている深度で0.01-0.1 MPaと、kPaのオーダーでかなり小さいことが示唆さ れており(例えば[3, 4]), このような比較的大きい変 形速度を実現することは非常に困難に思われる. 深発 月震の起きている温度・圧力条件下(約1000-1500℃, 3.5-4.5 GPa) (例えば[13, 14])において、マントル物 質(オリビン)と応力0.1 MPa. ドライ条件を仮定する と、実現される歪速度は $\varepsilon = 10^{-21} - 10^{-14} \text{ s}^{-1}$ となる. かなり高温側(>1400 ℃)なら断熱変形が起こりえそ うだが、全体的に断熱変形に必要な歪速度(10⁻¹⁴-10⁻¹⁰ s⁻¹)と潮汐力によって実現される歪速度(10⁻²¹-10⁻¹⁴ s⁻¹)の間にはギャップがあることがわかる(図4). そ して、この歪速度の条件をクリアしたとしても、1400 ℃以上の高温条件では温度の上昇による物質の軟化の 割合が小さく、式(2)を満たせない可能性が高い、例 えば、応力を0.1 MPa[4]、物体の大きさを10 kmとす ると、断熱変形に必要な歪速度10⁻¹⁴ s⁻¹を得る、これ らの条件を基に、式(2)から熱的不安定になる条件を 考察してみると、歪にもよるが、比較的低温側で熱的 不安定が起きやすくなることがわかる(図5). そして もう一つ考えなければならないのが、物体の大きさ(断 層サイズ)についてである。これまでの先行研究では 深発月震の断層サイズの大きさは~1 km程度である という報告もある(例えば[2]). もし物体の大きさが1 kmほどだと仮定すると、まず断熱変形を実現するた

図4: 断熱変形が起きる条件と月内部で実現されるかんらん石の 歪速度.かんらん石とその物体の大きさを0.1-10 km, 圧 力は4 GPa[14],応力0.1 MPa[4]と仮定し、ドライ条件と ウェット条件(500ppm H/Siと1000ppm H/Si)でかんらん 石の流動速[9]から歪速度を計算し、断熱変形の起こり得 る温度条件を検討した.ウェット条件の方がドライ条件と 比べて実現できる歪速度が大きくなり、低温で断熱変形を 実現できることがわかる.

歪ε=1

図5:熱的不安定と温度の関係.かんらん石に対して、物体の大 きさ10 km, 応力0.1 MPa[4], 歪速度10⁻¹⁴ s⁻¹, を仮定し, 式(2)から熱的不安定の起きる条件を計算した。Θ>1で熱 的不安定が起きる[26]. 歪にもよるが、低温側で熱的不安 定が起きやすいことが示唆される.

めに歪速度10⁻¹² s⁻¹程度が必要となり(式(1))。月内部 においてドライ条件でこの歪速度を実現するのは容易 ではないだろう(図4).いずれにせよ、月内部におい てドライ条件を仮定したとき,断熱不安定現象が起き る可能性は低いといえる。この断熱不安定現象は、あ る限られた領域(例えば低温で歪速度の大きい地球の 沈み込むプレート内)では起こり得るが、月内部の深 発月震にそのまま適用するのは難しいかもしれない.

上記のような低い応力(0.01-0.1 MPa)で深発月震を 引き起こすには、既存の断層(もしくはそれに類似す るもの)を起点として繰り返し起きていることを想定 するのが妥当だと考えることもできる[6]. 実際に月 震波の観測からも、これら深発月震は局所的に同じ領 域(クラスター)で繰り返し起きていることがわかって いる(例えば[24, 28, 29]). これは月内部の不均一性に 起因している可能性がある.不均一性を生み出す原因 として考えられるのは、水の分布やメルトの分布が挙 げられるだろう. 例えば、もし月内部に水が存在し、 その分布が不均一である場合、水が存在している領域 は周囲と比べて岩石の強度は下がり、変形の局所化へ とつながるだろう、さらに言えば、水があることで、 潮汐によって実現される変形速度も飛躍的に大きくな り、断熱変形を比較的低温で起こすことも可能となる (図4). 月内部における水の存在についてはまだ議論 があるが、水があることで熱的不安定を引き起こす条 件を比較的低温でクリアでき、月深部で観測されてい

図6:ドライ条件とウェット条件(500ppm H/Si or 1000ppm H/ Si)における熱的不安定.かんらん石に対して,深発月震 が観測されている温度圧力[14],応力0.1MPa[4],含水量 を仮定すると、流動速から実現される歪速度が決定できる [9]. それらの歪速度と式(2)から熱的不安定の起きる領域 を計算した. Θ>1で熱的不安定が起きる[26]. ウェット 条件での方が低温側で熱的不安定が起きやすくなることが 示唆され、深発月震が起きている温度条件とも整合的にな る

る深発月震をうまく説明できるかもしれない. 例えば、 深発月震の起きる領域での温度圧力条件(約10001500 ℃,約3.5-4.5 GPa.)[14]において、かんらん石、 応力0.1 MPa [4], そしてドライ条件orウェット条件 (500 or 1000 ppm H/Si)を仮定すると、流動速から実 現される歪速度が決まる[9]. その歪速度を用いて. 式(2)から熱的不安定の起きる条件を検証してみると、 ドライ条件のときは熱的不安定が起きる領域は非常に 狭いのに対し(図6a).ウェット条件の場合だと、熱 的不安定の起きる領域(条件)は低温側に拡大され、観 測されている深発月震の温度圧力条件(深さ)と合って くることがわかる(図6b.c)。ただ注意点として、ド ライ条件を仮定したときにも述べたように、ウェット 条件でも、これまで報告されてきた物体の大きさ(断 層サイズ~1 km 程度)より[2], やや大きめの断層サイ ズ(1-10 km)を想定しなければこの不安定現象を起こ すのは難しいかもしれない(図4). そして, そもそも 月深部に水が存在するのか、存在するのであればどの 程度の水が存在しているのかという疑問について考え なければならない. 最近の研究では月のQ値や電気伝 導度などから月内部にはこれまで考えられていたより も水が存在している(地球のアセノスフェア程度の水 ~0.01 wt%)可能性が示唆されている[30]. この深発 月震の引き起こされる原因を解明するにあたって、月 内部の水の存在が鍵になるかもしれない、逆に深発月

図7: (a): . Θ>1★メルトのぬれ角の形状. (a) θ >60°のとき, メルトは三重点に孤立して存在し,界面を完全には濡らさ ない. (b) θ <60°のときは図のようにメルトは粒界を濡ら し始める. 特に θ =0°のときは完全に粒界を濡らし,力学 的挙動を支配すると考えられる.

図8:メルトが連結することで滑りが起きるモデル.高圧下にお いてメルトが連結し、その部分が断層のような役割をし、 最終的にそこを起点として滑りが起きる.

震の解明こそが月内部の水の存在とその分布を示唆す るものになるかもしれない.

そして、もう一つ触れておきたいのがメルトの存在 についてである.月震波のデータ(弾性波の減衰領域) や、月深部におけるメルトの密度に関する実験結果な どから月の深部には部分溶融層が存在していることが 示唆されている(例えば[31,32]).メルトの存在によ って、岩石の強度は下がることは分かっているが[33-35]、これまでの先行研究のほとんどは低圧下(~200 MPa)で行われており、高圧下におけるレオロジーに 対するメルトの影響はほとんど分かっていない.特に 高圧下ではメルトのぬれ角が小さくなることが分かっ ており[36]、最終的に約7 GPaでぬれ角は0°になる(結

図9:月内部の温度圧力プロファイル[14]とかんらん岩のソリダ ス[38]の関係、先行研究から予想されている部分溶融層に ついては[31]、無水で発生させるのは難しそうである、文 献[38]図3から改変。

晶の界面がメルトによって完全に濡らされる)(図7). つまり低圧下よりも高圧下の方がレオロジーに対する メルトの影響は大きくなることが予想され、メルトに よる岩石の軟化の割合は大きくなるだろう(圧力効果 との競合にもなるが). このメルトが存在する領域が 変形の局所化を引き起こし、前述した不安定につなが る可能性もある.もしくはこのメルト部分そのものが 連結することで断層のような役割を果たし、滑りを引 き起こすのかもしれない(図8). 高圧下でメルトが存 在することにより、岩石レオロジーにおいて少なくと も3つの効果が生じると考えられる。①ぬれ角が小さ くなることで、メルトが連結し物質の拡散を促進、変 形挙動を支配する。②鉱物の結晶から水がメルトへと 溶け込むことによって、周りの岩石(固体部分)を硬く する効果(つまり固体部分とメルト部分の強度差は大 きくなる). ③メルトが間隙水圧として働き、物体に かかる有効圧を下げる効果。②の効果に関しては、月 内部に水が存在することが条件ではあるが、いずれの 効果も変形の局所化に一役買うだろう、そして、かん らん岩のソリダスと月内部の温度圧力構造を見比べる と、水の存在無しにメルトを月内部に発生させるのは 難しそうである(図9). つまり、もしメルトによって

深発月震が引き起こされているのであれば、間接的に 月内部の水の存在を示唆する可能性もあり、月内部の 状態や月形成を考察する上で非常に有益な情報となる. いずれにせよ、深発月震を解明することは月内部の情 報を得るために非常に重要であり、深発月震を解明す るにあたって、高圧下における岩石レオロジーに対す るメルトの影響も今後研究される必要があると言える.

4. おわりに

惑星内部の力学的挙動や進化を考える上で岩石レオ ロジーの解明は必要不可欠である.本論では,深発月 震についてレオロジーの観点と地球の深発地震を参考 に考察を行った.深発月震を解明する上で,キーワー ドとなってくるのは水or/andメルトによる変形の局 所化である可能性がある.今後は高圧下における変形 実験に加え,これらの不安定現象を捉えるためにアコ ースティックエミッション,そしてX線CTや電気伝 導度測定による微細組織のその場観察が重要になって くるだろう.もちろん,より詳しい月震波データの取 得や解析,熱流量などから予測される月内部の温度構 造の精度向上も必要不可欠である.

参考文献

- Wieczorek, M. A. et al., 2006, Rev. Mineral. Geochem. 60, 221.
- [2] Nakamura, Y., 1978, Proc. Lunar Planet. Sci. Conf. 9th, 3589.
- [3] Goins, N. R. et al., 1981, J. Geophys. Res. 86, 378.
- [4] Cheng, C. H. and Toksoz, M. N., 1978, J. Geophys. Res. 83, 845.
- [5] Nakamura, Y., 1977, Phys. Earth Planet. Inter. 14, 217.
- [6] Lammlein, D. R., 1977, Phys. Earth Planet. Inter. 14, 224.
- [7] Karato, S. and Wu, P., 1993, Science 260, 771.
- [8] Hirth, G. and Kohlstedt, D., 2003, Geophys. Mongr. 138, 10.1029.
- [9] Karato, S. and Jung, H., 2003, Philos. Mag. 83, 401.
- [10] Byerlee, J., 1978, Pure Appl. Geophys. 116, 615.
- [11] Kohlstedt, D. et al., 1995, J. Geophys. Res. 100, 17587.
- [12] Burgmann, R. and Drasen, G., 2008, Annu. Rev. Earth

Planet. Sci. 36, 531.

- [13] Hood, L. L. and Zuber, M. T., 2000, Origin of the Earth and Moon. University of Arizona Press, pp. 397.
- [14] Kuskov, O. L. et al., 2002, Phys. Earth Planet. Inter. 134, 175.
- [15] Lognonne, P. et al., 2003, Earth Planet. Sci. Let. 211, 27.
- [16] Rybacki, E. and Dresen, G., 2002, J. Geophys. Res. 111.
- [17] Tsenn, M. C. and Carter, N. L., 1989, Tectonophys. 136, 1.
- [18] Katayama, I. and Karato, S., 2008, Phys. Earth Planetary Inter. 168, 125.
- [19] Demouchy, S. et al., 2013, Phys. Earth Planet. Inter. 220, 37.
- [20] Green, H. W. II and Burnley, P. C., 1989, Nature 341, 733.
- [21] Griggs, D. T. and Baker, D. W., 1969, in Properties of Matter Under Unusual Conditions, New York, Interscience Publishers, pp. 23-42.
- [22] Ogawa, M., 1987, J. Geophys. Res. 92, 13801.
- [23] Meade, C. and Jeanloz, R., 1991, Science 252, 68.
- [24] Weber, R. C. et al., 2009, J. Geophys. Res. 114, doi: 10.1029/2008JE003286.
- [25] 唐戸俊一郎, 2000, レオロジーと地球科学, 東京 大学出版会.
- [26] Karato, S. et al., 2001, Phys. Earth Planetary Inter. 127, 83.
- [27] Gibert, B. et al., 2003, Geophys. Res. Let. 30, 2172, doi:10.1029/2003GL018459.
- [28] Nakamura, Y., 1981, J. Geophys. Res. 88, 677.
- [29] Nakamura, Y., 2005, J. Geophys. Res. 110, doi:10.1029/2004JE002332.
- [30] Karato, S., 2013, Earth Planet. Sci. Lett. 384, 144.
- [31] Weber, R. C. et al., 2011, Science 331, 309.
- [32] Van Kan Parker et al., 2012, Nat. Geosci. 5, doi:10.1038/NGEO1402.
- [33] Hirth, G. and Kohlstedt, D., 1995a, J. Geophys. Res. 100, 1981.
- [34] Hirth, G. and Kohlstedt, D., 1995b, J. Geophys. Res. 100, 15,441.
- [35] Mei, S. et al., 2002, Earth Planet. Sci. Lett. 201, 491.

- [36] Yoshino, T., et al., 2007, Earth Planet. Sci. Lett. 256, 466.
- [37] 大谷栄治, 地学雑誌 114, 338.
- [38] Hirth, G. and Kohlstedt, D., 1996, Earth Planet. Sci. Lett. 144, 93.

Dawnが照らす惑星誕生の鍵: ベスタとHED隕石

山下 直之1

(要旨) NASAのDawn ミッションは,惑星誕生の鍵を探るべく小惑星ベスタと準惑星ケレスを周回して元素,鉱物の分布調査や地質学的,地球物理学的観測を行っている.Dawn衛星に搭載されたガンマ線及び中 性子検出器(GRaND)はベスタ赤道域において,炭素質コンドライト起源と考えられる水素が濃集する領域 を発見した.南極域ではダイオジェナイト的な下部地殻が露出していることが確認された.またベスタの平 均元素組成から,HED隕石のベスタ起源説を強く支持する結果が得られた.

1. はじめに

Dawn ミッションは空間と時間を遡る旅である.太 陽から離れた天体は,揮発性物質や有機物の量,温度 が地球近傍とは異なる環境で誕生したと考えられ,よ り始原的な源物質を持つと考えられている.その中で も小天体は集積後,進化の過程が早期に終わっており, 原始惑星に近い,大昔の情報を保持していると期待さ れる[1].この2点から,原型をある程度保持している メインベルト小惑星は惑星誕生の過程を調査するのに 最適である.さらに,凍結線をまたいで複数の小惑星 を調査することで,惑星の形成・進化における水の役 割を探ることが理想的である[2].こうした理由から, 小惑星4ベスタと,現在は準惑星に分類される1ケレ ス(セレス)がDawnミッションの探査対象天体に選ば れた.

またベスタを特徴付ける事実として,ホワルダイト・ ユークライト・ダイオジェナイト(HED)隕石の存在 が挙げられる.HED隕石は現在までに1.5トンを超え る量が地上で見付かっており[3,4],隕石・天体サン プル量としては月,火星のものを大幅に上回る.酸素 同位体比や反射スペクトル観測[5]から,これらHED 隕石は共通の起源を持ち,それは小惑星ベスタである と考えられてきた. これらHED隕石の起源説を検証することができれ ば、わざわざ宇宙空間を往復してサンプル・リターン・ ミッションを行わずとも、膨大な量の小惑星サンプル を手に入れたことになる、ベスタの破片(と思しきも の)は我々の手中に既にあるのである、これを利用し ない手はない.

2. Dawn ミッションについて

Dawn ミッションは2つの天体を周回観測するよう 設計,実行された史上初の計画である.その観測対象 は上記の理由から小惑星ベスタと,太陽から異なる距 離にある準惑星ケレスに決定された.2007年9月27日, Dawn衛星はケープ・カナベラルから打ち上げられた. 日本の月探査衛星,セレーネ打ち上げの13日後である. セレーネは3週間で月に到着したが,Dawnは火星フ ライバイを経て,最初の観測対象天体ベスタに到着し たのは4年後の2011年7月である.DawnはNASA初 のイオン噴射エンジンを用いた人工衛星であり,加減 速に時間がかかるが,優れた燃料効率を持っている. これにより複数の天体について,フライバイだけでは なく,1天体半径程度の高度まで接近した周回観測が 可能となった.

Dawnには3つの観測機器(加えて、衛星自身を用い た電波科学)が搭載されている.1つ目はFraming Camera(FC)であり、ステレオカメラによる撮像を行

^{1.} Planetary Science Institute yamashita@psi.edu

う[6]. 2つ目はVisible-InfraRed spectrometer(VIR) と呼ばれ,分光観測を行っている[7]. 3つ目はガンマ 線及び中性子検出器(Gamma Ray and Neutron Detector, GRaND)である[8, 9].

ベスタ軌道投入後, Dawnは3種類の高度から科学 観測を行った. 測量軌道(3000 km), 高高度軌道(950 km), 低高度軌道(475 km)である. 括弧内の距離は ベスタの重心から軌道までの距離である. それぞれ, FC, VIR, GRaNDによる観測に適した軌道となってい る. ベスタの平均半径は約265 kmと判明したので, 低高度軌道ではベスタ表面から平均210 kmのところ を周回したことになる. 一般的にガンマ線や中性子分 光計の空間分解能はおおよそ高度と同じオーダーであ るので, 天体半径ほどしか近づけなかったことは後の 元素分布地図作成の大きな制限となった.

14ヶ月にわたる周回観測を終え, Dawn衛星はベス タを2012年9月に離脱, 2年半の巡航後, 第2の観測 対象であるケレスの軌道に2015年3月, 投入された. 本稿では主にGRaNDによるベスタ観測について紹介 する.

3. GRaNDについて

GRaNDは天体表面から放出されるガンマ線と中性 子を計測する核分光計である.過去のミッションで使 用実績のある検出器と,新技術実証のため新型の検出 器の両方が織り交ぜられ,21個の検出器から構成さ れており,様々な同時及び反同時計数を行っている. 現在までにGRaNDは惑星間空間,火星及びベスタ近 傍で計測を行っており,ケレスの本格的観測も始まり つつある.

3.1 検出原理

宇宙空間では、銀河宇宙線と呼ばれる高エネルギー 粒子(主に陽子やアルファ粒子)が等方的に飛び交って いる.大気が薄い、もしくは存在しない天体にはそれ ら粒子が降り注いでいる.そうした天体の表面では、 物質と宇宙線粒子の様々な原子核反応の結果、中性子 及びガンマ線が生成され、宇宙空間に漏れ出している. また、天然放射性元素(K, Th, U)は宇宙線の到達に関 係なく自発的に崩壊し、ガンマ線を常に放出している. これら放射線を精度よく計測することにより、放射 線を発した物質についての情報が得られる. ガンマ線 のエネルギーは放出した原子核固有の値を持っており, 例えば2.223 MeVのエネルギーを持ったガンマ線は水 素(¹H)から,7.631 MeVのガンマ線は鉄(⁵⁶Fe)から放 出されるということが分かっているので,こうした離 散的エネルギーを持ったガンマ線強度から,天体表面 を構成する元素の組成や分布を決定することができる. また高速中性子(> 0.7 MeV)は主に平均原子量を,熱 外中性子(0.5 eV~0.7 MeV)は水素の存在量を,熱中 性子(< 0.5 eV)は中性子吸収断面積(Fe, Ca, Alなどが 大きく寄与[8])などの情報をもたらす.こうした放射 線は透過性が高いため,惑星核分光法では天体表面か ら数十 cmの深さまでの元素組成を探査することがで きる.

3.2 検出器

メインのガンマ線検出器として、Bismuth Germanate(BGO)シンチレータが採用された.これ はNASAのLunar Prospector(LP)ミッションで用い られた実績を持つ検出媒体[10]で、エネルギー分解能 は10%(@662 keV)である.セレーネ(かぐや)ミッシ ョンで用いられたゲルマニウム検出器(~0.5% @662 keV)[11, 12]と比較して20倍も分解能は劣るが、冷却 の必要がなく、高い検出効率を誇る.0.4 – 9 MeVの 範囲をカバーする.

図1: Dawn衛星搭載のガンマ線及び中性子検出器(GRaND)の模式図. 21個の検出器の出力が独立に記録され、天体から放出されたガンマ線と中性子線の同時・反同時計数を行っている。略語については本文参照のこと.

サブのガンマ線検出器として, Cadmium Zinc Telluride (CZT) 半導体検出器も搭載している. 4×4 個のアレイを構成する. これは技術実証実験であり, 残念ながら今のところ, BGOを上回るほどにはサイ エンスに貢献していない. エネルギー分解能は打ち上 げ前試験において1%以下(@662 keV), 3 MeVまで の範囲をカバーする.

中性子検出器は、ガンマ線検出器を囲むように、そ の上下、左右の4箇所(+Y, -Y, +Z, -Z)に設置されて いる(図1参照).左右のもの(+Y, -Y)はL字型をして おり、ホウ素添加のプラスチック・シンチレータ (boron-loaded plastic, BLP)である.これは多重散乱 を検出して高速中性子を測定する.上下のもの(+Z, -Z)はBLPとlithiated glass(LiG)のphoswich(2つの シンチレータを光学的に接続し、1つの光電子増倍管 で両方の光量を同時に測定する配置)になっており、 LiGにおいて主に熱中性子を、BLPにより熱外中性子 を、BLP多重信号により高速中性子を測定する.BLP はNASAのLP(月探査)、Mars Odyssey(火星探査)、 MESSENGER(水星探査)ミッションで用いられた実 績がある.LiGは惑星探査に初めて採用された.

GRaND内の全ての検出器は連動している.3つ以 上の検出器が同時に信号を検出した場合は、宇宙線高 エネルギー粒子が突き抜けたと判断する.天体からの 放射線は宇宙線により励起されたものがほとんどなの で、宇宙線の強度変動を補正することは元素組成導出 のために不可欠である.また、CZTとBGOの同時計 数を行うことでコンプトン望遠鏡を実現し、人工衛星 起源のバックグランド・ガンマ線を除去するモードも 同時に記録している.

4. これまでの成果

ベスタ表面の元素組成は、月に比べて変化に乏しい. これはベスタの大きさから、月ほど大規模な火成活動 が期待できないこと、HED隕石の組成変動などから 予想はされていた.月とは違って斜長石やかんらん石 に乏しく、ましてや嵐の太洋周辺のような、放射性元 素が濃集した領域は見つかっていない.よって例える ならば、月から高地、西側の海、南極エイトケン盆地 を除いた領域、すなわち東側の海のみを観測している ようなものである(さらに言えばチタンもほとんどな

図2: ガンマ線分光によるベスタの平均元素組成(誤差範囲1σ, 2σ)と, HED隕石との比較^{*}.

い). したがって分布図を作成できるほどの十分な統 計精度をもって変動が確認できた観測量は現在のとこ ろ,水素[9],鉄[13],中性子吸収量[14],平均原子量 [15],高エネルギーガンマ線[16]のみである.鉄・酸 素比,ケイ素・酸素比,カリウム,トリウム存在量に ついては,全球平均値を導出した[9,17].しかしながら, 今後の解析で新たな元素情報が導出される可能性も十 分に残されている.

ベスタ表層の鉄・酸素比,ケイ素・酸素比は,幅広 い隕石の値の中でもHED隕石のものとよく一致した が,ややダイオジェナイトとキュムレイト・ユークラ イトよりの結果となった(図2). 観測結果はHED隕 石のベスタ起源説を強く示唆している[9].

図3にベスタ地形図[18, 19],及び水素[9],鉄[13]分 布図を示す.地形図より,赤道付近が盛り上がり,北 極,南極域が低い,南北に潰れた歪な形をしているこ とが分かる.南半球にはベネネイアと,それよりも新 しいレアシルビアと呼ばれる2つの巨大なベースン [19]が折り重なって存在する(図3a).水素は赤道領域 に濃集しており,逆に南極域,特にレアシルビア・ベ ースン内は極端に欠乏していることが分かった(図 3b).この巨大ベースン内での熱外中性子量最低点を 水素量ゼロとすると,赤道域には約400 µg/g,全球

※ カラー図は電子版を参照のこと.

図3: Dawnミッションにより得られたベスタの a)地形図[18, 19] 及び b)水素[9], c)鉄[13]の分布図. ベネネイア, レ アシルビア・ベースンのおおよその境界を白の破線で示した. Claudia座標系. 地形図はベスタ重心からの距離を 示す.

図4: 主な太陽系天体のK/Th比の観測結果[17, 21-26]. 太陽から の距離の関数として示した.

平均で約200 μg/g程度の水素が存在することになる. 赤道域には極域と違い,水や氷を日照から守って極低 温に保てるような永続的な陰はないので,水素原子は 水和物の形で保持されていると解釈されている.水素 分布はクレータ密度,及びアルベドとよい相関をもっ ており,炭素質コンドライトよって運ばれてきた水素 が表層に降り積もり,レアシルビア・ベースンを形成 した衝突イベントによって撒き散らされた物質によっ て覆い隠された結果,作られた分布と考えられている [9].

鉄存在量はレアシルビア内で低く,逆に北極域で高 いことが明らかになった(図3c).このベースン内で は鉄量と中性子吸収量[14]の両方が非常に低い.よっ て、レアシルビア・ベースン内はHED隕石の中でも ダイオジェナイト成分が比較的多く含まれると考えら れる[13,14].このベースンの深さと地殻厚を考えた 場合、下部地殻が露出していると考えられるが、組成 的にもこの説と矛盾しない.またこの成分は東側(北 を上としたとき、子午線の右側.東経0°から90°あた り)において葉状に北に伸びており、北半球まで達し ていることが分かった.これは巨大衝突で地殻が深く 掘り下げられダイオジェナイトが露出したこと、その 時の噴出物が降り積もったと考えられている.

また西側(子午線の左側)には鉄量が少なく,中性子 吸収量が中程度の低地(北緯30°,東経240°付近)があ る. これはHED隕石の組成のうち,キュムレイト・ ユークライトに相当する[13]. 同様に鉄量と平均原子 量の分布から,北極域の広範囲にわたってYamato Type-Bダイオジェナイトに対応すると考えられる領 域が報告されている[4].

比較的揮発性の高いカリウムと, 難揮発性のトリウ ムの存在量からも, HED隕石のベスタ起源説がさら に支持された. Wasson(2013)はGRaNDの初期観測 結果(カリウムの上限値1000 µg/g [9])から, ベスタ 起源説を否定的にとらえていたが[20], 解析が進んだ 結果, カリウムの全球平均値が595 ± 35 µg/g, トリ ウムが657 ± 59 ng/gと導出されたことにより[17], こ の主張は論駁された. 図4にベスタを含む太陽系の主 な天体のK/Th比[17, 21-26]を示した. ベスタのK/ Th比は900 ± 400となり, カリウムが若干欠乏してい ることから, ベスタの形成時期は早く, 熱くて完全に は凝結していない太陽系星雲から集積したか, 衝突等 によりカリウムが取り除かれたと結論付けられた[17].

5. 観測データについて

GRaNDの観測データはすべてNASAのPlanetary Data System (PDS) 内の. Small Bodies Node で公開 されている[27].処理レベルによって複数の種類があ り、Level-1Aは工学値変換を終えた(ほぼ)生データ であり、可逆な校正のみが適用されている、これは時 系列データで、取得された全てのイベントを含む. Level-1Bは不可逆な校正が適用されており、ゲイン補 正を中心とした様々な校正、補正、データ選別を行い、 惑星科学の研究に適した形で提供されている[28]. Level-1Bデータも時系列スペクトルである. Level-2 データはマップ・データであり、様々な観測量が緯度、 経度ごとにまとめられている. これらデータは一般公 開されており、誰でも自由に利用できる. またベスタ の地形データはDawn Public Dataサイトで公開され ている[18]. 両サイト共, ケレス観測結果も順次追加 されている、さらなるデータ利用が進み、サイエンス が促進されることを願う.

6. まとめ

GRaNDを用いた中性子, ガンマ線観測によって,

ベスタの元素組成が明らかになりつつある.赤道域の クレータ密度が高く、アルベドの低い領域に水素が濃 集していることから、炭素質コンドライトが長期間に わたり降り注いだことによってベスタ表面に水素がも たらされたと考えられる、南極域にあるリアシルビア・ ベースンは上部地殻を剥ぎ取っており、ダイオジェナ イト的物質を露出、拡散させている、主要元素、天然 放射性元素の組成比は、HED 隕石のベスタ起源説を 強く示唆している. GRaNDの空間分解能は限定的で あるが、一部の地域は特定のHED隕石の組成と一致 するような特徴を示している. ベスタ上でかんらん石 がほとんど見付からないなど、謎はまだ多く残されて いるが、原始惑星に近いと考えられる天体の理解が進 むことで,惑星の誕生・進化の過程に光が照らされつ つある. 観測データは逐一公開されている. FC, VIR による観測データも含めて、惑星科学コミュニティ全 体による更なる解析にも期待したい。また、ケレスの 本格的な元素組成観測は2015年12月から始まる. 謎 の白点や高さ約5 kmのピラミッド型地形など、話題 の多いこの準惑星の観測結果にも注目である.

謝 辞

本稿で利用したデータは、NASAのDawn ミッショ ンにより取得,解析されたものです.Dawn PI(Prof. C. T. Russell),ステレオ写真傾斜測定チーム(Drs. R. Gaskell and N. Mastrodemos), FC PI(Dr. A. Nathues), GRaND PI(Dr. T. H. Prettyman),及び Dawn ミッション関係者各位に深く感謝いたします. さらに、本稿に対し有益なコメントをいただいた唐牛 譲氏にこの場を借りてお礼申し上げます.

参考文献

- [1] Keil, K., 2002, in Asteroids III, 573.
- [2] Russell, C. T. et al., 2012, Science 336, 684.
- [3] The Meteoritical Bulletin Database, http://www.lpi. usra.edu/meteor/.
- [4] Beck, A. W. et al., 2015, MAPS 50, 1311.
- [5] McCord, T. B. et al., 1970, Science 168, 1445.
- [6] Sierks, H. et al., 2011, SSR 163, 263.
- [7] De Sanctis, M. C. et al., 2012, Science 336, 697.

- [8] Prettyman, T. H. et al., 2011, SSR 163, 371.
- [9] Prettyman, T. H. et al., 2012, Science 338, 242.
- [10] Feldman, W. C. et al., 2014, JGR 109, E07S06.
- [11] Yamashita, N. et al., 2010, GRL 37, L10201.
- [12] Yamashita, N. et al., 2012, EPSL 353-354, 93.
- [13] Yamashita, N. et al., 2013, MAPS 48, 2237.
- [14] Prettyman, P. H. et al., 2013, MAPS 48, 2211.
- [15] Lawrence, D. J. et al., 2013, MAPS 48, 2271.
- [16] Peplowski, P. N. et al., 2013, MAPS 48, 2254.
- [17] Prettyman, T. H. et al., 2015, Icarus 259, 39.
- [18] Dawn Public Data, http://dawndata.igpp.ucla.edu.
- [19] Jaumann, R. et al., 2012, Science 336, 687.
- [20] Wasson, J. T., 2013, EPSL 381, 138.
- [21] Peplowski, P. N. et al. 2011, Science 333, 1850.
- [22] Surkov, Y. A. et al., 1986, JGR 91, E215.
- [23] Lodders, K. and Fegely, Jr., B., 1998, The Planetary Scientist's Companion (Oxford: Oxford University Press).
- [24] Prettyman, T. H. et al., 2006, JGR 111, E12007.
- [25] Taylor, G. J. et al., 2006, JGR 111, E03S06.
- [26] Barrat, J. A. et al., 2009, MAPS 44, 359.
- [27] Prettyman, T. H. et al., 2014, NASA Planet. Data Sys., Dawn at Vesta Reduced Data Records.
- [28] Yamashita, N. and Prettyman, T. H., 2014, NASA Planet. Data Sys., Dawn at Vesta Reduced Data Records.

系外惑星「遠い世界の物語」その7 ~原始惑星系円盤観測から探る系外惑星~

金川 和弘1

(要旨)近年のアタカマ大型ミリ波サブミリ波干渉計(ALMA 望遠鏡)やハワイ・マウナケアの大型光学赤外 望遠鏡(すばる望遠鏡)など大型望遠鏡を用いた原始惑星系円盤観測の進歩により惑星形成領域にギャップ構 造をもつ円盤が多数発見されている.このような円盤ギャップ構造の形成を説明する有力なメカニズムとし て,惑星と円盤との重力相互作用が挙げられる.本稿では,観測されたギャップが惑星によって形成された とすると,その構造からギャップを形成した惑星にどのような制限をつけることができるのかについて紹介 する.また,ALMAの長基線観測キャンペーンで得られたデータを元にHL Tau円盤のギャップの構造か ら惑星質量を見積もった結果も併せて紹介したい.

1. はじめに

原始惑星系円盤は、星の誕生と同時に星の周囲に形 成され、水素ヘリウムからなるガス成分と、 塵(ダス ト)成分から構成される。我々の地球に代表される岩 石惑星や木星のような巨大ガス惑星は、その名が表す とおり, 原始惑星系円盤の中で生まれる. 円盤に含ま れるダスト成分の集積によって、岩石惑星や巨大ガス 惑星のコアが形成される、そのうち、巨大惑星のコア は周囲の円盤ガスを捕獲し、大量のガスをまとった巨 大惑星へと成長すると考えられている。また、ガス円 盤との重力相互作用はある程度大きな岩石惑星や巨大 ガス惑星を円盤の内側(または外側)に移動させてしま う、このように、ガス惑星の存在は惑星の質量および 軌道半径の進化に強く影響する. その後, 円盤ガスが 散逸すると、現在の太陽系のようなガス成分を周囲に 持たない中心星と惑星から成る系ができあがる。視線 速度法やトランジット法などで観測されるのは主にこ の段階の惑星である、このような系外惑星観測からは、 太陽系惑星では見られない中心星に非常に近い位置を 公転する巨大ガス惑星(ホットジュピター)や地球サイ

ズの惑星,それとは逆に中心星から非常に遠方に存在 する惑星が多数観測されている.系外惑星発見以後の 惑星形成論の大きな課題として,このような太陽系惑 星とはかけ離れた惑星を持つ惑星系の形成を説明でき るように太陽系の形成モデルを拡張していく必要があ る.どのようにして多彩な惑星系が形成されたのか? その一つの原因として考えられているのが,原始惑星 系円盤と惑星の相互作用である.

観測的な制約から、これまでは主に理論面から原始 惑星系円盤中の惑星形成および進化の研究は進められ てきた.しかし、近年ではALMAやすばる望遠鏡な どによって原始惑星系円盤の惑星形成領域の直接観測 が可能になり、円盤中の惑星形成および進化に対して 理論研究だけでなく、観測的にアプローチすることも できるようになってきた. 実際に, ALMAやすばる 望遠鏡によって惑星が作ったと考えられるスパイラル やギャップ構造を持った原始惑星系円盤が多数発見さ れている.このような観測からは円盤ギャップの深さ, 幅およびガス温度を読み取ることができる。原始惑星 系円盤のギャップ構造が惑星と円盤の相互作用で形成 されたとすると、円盤観測から得られた観測量からそ のギャップを作った惑星の情報を得ること可能だろう か?本稿では、まず惑星が原始惑星系円盤にギャップ を作るメカニズムについて簡単に触れた後、実際に観

北海道大学低温科学研究所 2016年1月よりポーランド シュチェチン大学に異動. kanagawa@lowtem, hokudai.ac.jp

測されたギャップ構造からどのようにして惑星質量が 見積もられるのかについて,筆者の最近の論文[1-3]を 元に紹介していきたい.

5. 巨大惑星による円盤ギャップ構造の 形成

この節では、原始惑星系円盤中に誕生した巨大ガス 惑星によるギャップ形成のメカニズム(円盤-惑星相 互作用)について簡単に説明していきたい. さて. ま ずは円盤にギャップを開けないような比較的小さな惑 星(月質量から数地球質量程度)を考えよう.惑星が形 成されるような段階にある円盤は、中心星重力と遠心 力がほとんど釣り合った状態、すなわちケプラー回転 していると考えられる.このような差動回転(ケプラ ー回転)する円盤の中に、惑星が存在すると図1のよ うに、惑星重力によって生じた密度揺らぎ、いわゆる 密度波が励起される。密度波は惑星との相対速度が超 音速であるような領域で励起されるため、波は惑星が 存在するという情報をもって惑星から離れる方向に伝 播していく、円盤内側ほど速い回転速度を持つため、 図1のように、惑星より外側(x > 0)では惑星の後方に、 惑星より内側(x < 0)では惑星の前方に密度波が存在 する. このため. 惑星の後方にある密度波(x > 0)は 惑星を後方に引っ張ることで惑星の回転速度を遅くす る. 逆に, 惑星の前方にある密度波(x < 0)は惑星を 前方に引っ張るため、惑星の回転速度を速くするよう に働く、このような重力相互作用は惑星にトルクを及 ぼし、惑星の惑星の軌道長半径を変化させる。また、 惑星が受けたトルクの反作用として密度波も惑星から 角運動量を受け取る、すなわち、惑星の後方にある波 は正の角運動量を,惑星の前方にある波は負の角運動 量をそれぞれ惑星から受け取ることになる.惑星から 受け取った角運動量は波と共に惑星から離れる方向に 運ばれ、やがて密度波が減衰すると周囲の円盤ガスに 受け渡されることになる、このプロセスは、後述する 円盤ギャップの形成において非常に重要である.

木星のような巨大惑星は,周囲の円盤ガスとのやり 取りによって惑星軌道に沿ったギャップ構造を形成す る.円盤と惑星の重力相互作用は惑星質量が大きくな るほど強くなり,惑星から円盤ガスに受け渡される角 運動量は多くなる.前述のように惑星軌道の内側のガ スは負の角運動量を惑星から受け取るため,円盤の内

図1:2 次元数値流体計算によって得られた惑星近傍の原始惑星 系円盤のガス面密度構造、円盤ガスとの重力相互作用に よって惑星が円盤に密度波を励起していることが分かる. 図は、惑星質量がM_p = 3地球質量、円盤の温度を反映す る円盤の鉛直方向の厚み(h_p)が惑星の軌道長半径(R_p)の 5%、および円盤粘性の強さを表すパラメータαが10³のと きの計算結果.(粘性のパラメータαの値が大きいほど円 盤粘性が強いことを表している.)

側方向に移動する. 同様に, 惑星軌道の外側のガスは 正の角運動量を惑星から受け取るため, 円盤外側に移 動する. このような角運動量の交換に伴う円盤ガスの 移動によって惑星の近傍領域からガスが取り除かれ, 惑星軌道に沿った低ガス密度領域(円盤ギャップ)が形 成される(図2). 一方で, このようなギャップ構造は 円盤内の乱流に起因する実効的な粘性によるガスの拡 散によって徐々に埋められる. 最終的なギャップの深 さは, 惑星が円盤に及ぼす重力トルクの大きさとガス の粘性拡散の強さの釣り合いで決まる. 惑星トルクの 大きさは惑星質量に関係しているので, ギャップの深 さは惑星質量を反映している. すなわち, 質量が大き な惑星ほど深いギャップを開けることができる. 後述 のように, この関係を利用してギャップの深さからそ れを作った惑星の質量を見積もることができる.

図2:数値流体計算から得られた巨大惑星周りの原始惑星系円盤の構造. 巨大惑星の軌道に沿って軸対称な低ガス密度領域(ギャップ 領域)が形成されているのが分かる.図は, $M_{\rho} = 1M_{J}$, $h_{\rho}/R_{\rho} = 0.05$, $\alpha = 10^{3}$ の場合の計算結果.(M_{J} は木星質量.)

ギャップの幅については密度波の伝播および減衰過 程と密接に関係していると考えられている。密度波は 円盤内を惑星から遠ざかる方向に伝播していく内に. 円盤粘性や波の非線形発展に伴う衝撃波によって徐々 に減衰する.波が減衰した場所で波が運んでいた角運 動量が円盤ガスに受け渡され、ガス密度の勾配が形成 される. すなわち, 密度波の減衰プロセスがギャップ の幅を決定しているのである.しかしながら、従来の 波の減衰モデルは地球質量程度の比較的小さな惑星の 場合ではギャップの幅をよく再現するのだが、木星の ような巨大惑星が作るギャップの幅を説明できない [4]. このようにギャップの幅を決めるメカニズムは未 だ分からない部分が多いが、数値流体シミュレーショ ンの結果によると惑星質量が大きくなるほど幅の広い ギャップが形成されることが分かっている[5,6].もし, ギャップ幅と惑星質量の定量的な関係が得られればギ ャップの幅から惑星質量を見積もることが可能となる. 次節では、筆者の最近の研究で得られたギャップ深さ およびギャップ幅と惑星質量の定量的な関係を示し. 実際に円盤観測(特にミリ波やサブミリ波観測)から得 られる観測量からどのように惑星質量を見積もれるの かを見ていきたい.

円盤ギャップ構造の直接観測による 惑星質量の見積もり

現在までにミリ波やサブミリ波の観測によって、ギ ャップ構造を持つ原始惑星円盤が多数発見されている [7-10]. このようなギャップ構造の形成過程として, 前節で説明した惑星 | 円盤相互作用の他に、例えば、 ダストの焼結によるもの[11], 円盤のデットゾーン形 成に伴うもの[12]、またダストとガスの摩擦を考慮し た永年重力不安定性によるもの[13]など様々な形成モ デルが提唱されている.しかしここではギャップは惑 星によって形成されたものとして話を進めていきたい. 円盤ギャップ構造を観測したとき、観測量としてギャ ップの深さ、幅および円盤温度を得ることができる。 このような観測量と惑星質量の定量的な関係が得られ れば、その関係を用いて観測量からギャップ中の惑星 質量を見積もることができるだろう. ギャップの深さ と惑星質量の関係は、最近の幅広いパラメータ空間の 高空間解像度の数値流体シミュレーションを用いた研 究[5, 6, 14]によって調べられている。また、筆者の最 近の研究[1,2]では、上記の数値流体シミュレーショ ンで得られたギャップ深さを再現するような簡単な理 論モデルを構築した. その理論モデルによると、ギャ

ップの深さ(ギャップの底のガス密度 Σ_{\min} とギャップ 端のガス密度 Σ_0 の比)は以下のように表される.

$$\frac{\Sigma_{\min}}{\Sigma_0} = \frac{1}{1 + 0.04K},$$
 (1)

ここで, 無次元のパラメータKは以下のように定義される.

$$K = \left(\frac{M_p}{M_*}\right)^2 \left(\frac{h_p}{R_p}\right)^{-5} \alpha^{-1}.$$
 (2)

ここで, *M_p*, *M**, *R_p*, *h_p*, *a* はそれぞれ惑星質量, 中心 星の質量, 惑星の軌道長半径と惑星位置での円盤の厚 み, およびShakura & Sunyaevの粘性パラメータ[15] を表す. また, 惑星位置での円盤の厚み*h_p*と惑星の 軌道長半径*R_p*の比を円盤アスペクト比と呼ぶ. 図3は 式(1)と数値流体シミュレーションで得られたギャッ プの幅を示している. 式(1)は数値流体シミュレーシ ョンの結果をよく再現していることが分かる. 無次元 パラメータKは惑星質量, 円盤アスペクト比, 円盤 粘性の組み合わせであるので円盤のアスペクト比, 円 盤粘性の大きさが分かっていれば, ギャップの深さか ら惑星質量の見積もりを行うことができる[2]. しか しながら, ギャップの深さによる見積もりにはギャッ

図3:惑星が作るギャップの深さ.縦軸はギャップ深さ(ギャッ プ底とギャップ端のガス密度の比),横軸は無次元のパラ メータ K.シンボルは数値流体計算[5,6,14]で得られた ギャップの深さを表している.黒線は筆者らのモデルで与 えられるギャップ深さ(式[1]).(Kanagawa et al. 2015b [2] Figure 1を改変.)

図4:筆者らの数値流体計算で得られたギャップの幅(縦軸)と 無次元のパラメータK'(横軸)との関係、ギャップの幅Δgeo はギャップの端をガス面密度がギャップ外側の値の半分 になった場所とし、その間の距離として定義している. (Kanagawa et al. 2015c [3] Figure 3を改変.)

プ底ではガス密度が小さくそこから発せられる放射も 弱いため、深いギャップであるほど正確にギャップの ガス密度を見積もるとこが困難になってくるという弱 点がある.一方で、ギャップの幅はギャップの底に比 べてガス密度が大きいので観測が容易である.

ギャップの幅と惑星質量の間にはどのような関係が あるのだろうか?筆者らはその関係を調べるために, 様々な惑星質量,円盤アスペクト比,および円盤粘性 を持つ円盤についてギャップ形成の数値流体シミュレ ーションを行った[3].その結果得られたギャップの 幅が図4である.ここで,ギャップの幅Δgapはギャッ プの端をガス面密度がギャップ外側の値の半分になっ た場所とし,その間の距離として定義している.この 図から分かるように,ギャップの幅は以下で定義され る無次元のパラメータK'でよくスケールされ.

$$K' = \left(\frac{M_p}{M_*}\right)^2 \left(\frac{h_p}{R_p}\right)^{-3} \alpha^{-1},$$
$$= K \left(\frac{h_p}{R_p}\right)^2, \qquad (3)$$

ギャップ幅は以下のような経験式で表すことができる.

$$\frac{\Delta_{\text{gap}}}{R_p} = 0.41 K' = 0.41 \left(\frac{M_p}{M_*}\right)^{1/2} \left(\frac{h_p}{R_p}\right)^{3/4} \alpha^{-1/4}.$$
 (4)

この関係式を用いることで, ギャップ深さを用いた惑 星質量の見積もりの場合と同じように, ギャップの幅 から惑星質量を求めることができる.

この節ではギャップの観測量から惑星質量を見積も る方法としてギャップの深さを用いる方法(式[1])と ギャップの幅を用いる方法(式[4])を紹介した.もし 観測されたギャップが惑星が作ったもので,かつギャ ップの深さ・幅共に十分な精度で観測されたとすると, そのギャップ深さ,幅からそれぞれ見積もった惑星質 量は一致するはずである.すなわち,式(1)と(4)から 惑星が作ったギャップと深さと幅が満たすべき以下の 関係を導き出すことができる.

$$\left(\frac{\Delta_{\rm gap}}{R_p}\right) \left(\frac{\Sigma_{\rm min}}{\Sigma_0 - \Sigma_{\rm min}}\right)^{1/4} \left(\frac{h_p}{R_p}\right)^{-1/2} = 0.92.$$
(5)

ここで,円盤のアスペクト比は観測量であるガス温度 から見積もることができるので,式(5)の左辺は観測 量だけで構成されていることが分かる.つまり,式(5) を使えば,観測量だけから観測されたギャップが惑星 が作ったものかどうかを判別することができる.

次節では上記の関係式の観測への応用について述べ るが、その前にこの節で紹介した惑星質量の見積もり を観測に適用する際の注意点を述べていきたい.ここ で我々のモデル(式(1)と(4))は円盤ガスのギャップ構 造に適用されるべきものである.一方で、ALMAな どによるミリ波サブミリ波連続光の観測で得られるの は、円盤ガスに含まれているダスト成分の分布である. したがって、ダストとガスのカップリングが弱い場合 にはこのような観測で得られた結果には我々のモデル は適用できない、ダストとガスで同じギャップ深さ、 幅が観測されるかどうかは円盤のガス密度、円盤粘性 に依存しており、ガス密度円盤粘性が大きいとダスト とガスと同じギャップ深さ、幅のギャップが観測され る[16].例えば、この後の節で紹介するHL Tauの円 盤のような比較的思い円盤ではガス密度が高いため、 ガスとダストで同じギャップ深さ,幅が観測される可 能性は十分にある.このようにダスト連続光の観測に 我々のモデルを適用する際にはダストとガスがよく混 ざっているかどうかに注意する必要がある.

4. HL Tau の場合

ここまで円盤ギャップ構造から惑星質量を見積もる 方法について述べてきた. 最後にこの方法をALMA 望遠鏡の長基線のキャンペーン観測で得られたHL Tau円盤のギャップ構造[10]に適用して惑星の質量を 見積もってみたいと思う. この観測でHL Tau円盤は 異なる3つの周波数帯で観測されている. そのうち 230 GHz帯(Band 6)と345 GHz帯(Band 7)のデータ を使うことで、円盤の光学的厚さ、円盤温度を見積も ることができる(詳しい解析方法は[2]をご覧いただき たい). この解析にはダストの性質を仮定する必要が あり,ここではよく使われるダストの吸収係数が波長 のβ乗に比例するモデルを用いる。図5aはALMA Band 6で得られたHL Tau 円盤の輝度温度の分布,円 盤長軸(x=0方向)に沿った方向のガス密度および円 盤の厚みを示している.光学的厚みからガス密度を見 積もる際にはダストの吸収係数として $\kappa = 2 \times 10^2 \text{ g/}$ $cm^{2}(\beta = 1.5, ガス - ダスト比を50と仮定)を使ってい$ る.図5bからも分かるように、HL Tauの円盤は比較 的質量の大きな円盤である. 円盤粘性の大きさにもよ るが、このようなガス密度の大きな円盤ではダスト分 布は円盤ガスの分布と分離しにくい. 以下では円盤ガ スとダスト粒子はよく混ざっているとして、ギャップ の深さおよび幅を見積もる. 図5から見積もったギャ ップの深さ、幅およびそこから見積もった惑星質量を 表1にまとめている. 30 AUおよび80 AUにあるギャ ップ構造はギャップの深さ、幅の両方から見積もった 惑星質量がほぼ一致しており、これらのギャップが惑 星によって作られたと考えても矛盾しない。一方で、 10 AU付近のギャップ構造はギャップ幅から見積もっ た惑星質量に対してギャップの深さから見積もった惑 星質量が小さい. すなわち, このギャップは惑星起源 のものでない可能性がある.しかし、ここで注意した いのは10 AUや30 AUにあるギャップは幅が観測の ビームサイズと同程度であるため、完全に空間分解さ れていない可能性がある. その場合にはギャップ構造

図5:HL Tau円盤の230GHz帯(Band6)での輝度温度(a)と, x = 0 方向に沿った円盤ガス密度(b)と円盤アスペクト比(c). この図は ALMA 長基線キャンペーン観測で得られたデータを用いている.円盤ガス密度(b),アスペクト比(c)を計算する際はダストの 吸収係数を波長のβ乗に比例するとしてβ = 1.5 と仮定している.また,観測データの解析には茨城大学の塚越崇氏,百瀬宗武 氏に協力していただきました.

表1: HL Tau円盤のギャップの深さ,幅とそこから見積もられる惑星質量. ギャップの深さ,幅は図5のガス密度分布(b)から見積もっている.また,10AUギャップ,30AUギャップの深さは観測の観測のビームサイズでならされてしまっている可能性を考慮して上限値(惑星質量では下限値)として見積もっている.ここでM」は木星質量を表している.

ギャップの位置	ギャップの深さ	ギャップの幅	ギャップの深さ	ギャップの幅
(R_p)	$\left(\sum_{\min}/\sum_{0}\right)$	$\Delta_{\rm gap}$	から見積もった惑星質量	から見積もった惑星質量
10 AU	< 0.1	9.5 AU	$> 0.3 M_J$	$1.4 M_J$
30 AU	< 0.3	7.5 AU	$> 0.3 \ M_J$	$0.2 M_J$
80 AU	0.4	24 AU	$0.7 M_J$	$0.5 M_J$

は周囲の構造にならされてしまうため、ギャップの深 さは浅くなってしまうと考えられる.もし、この効果 で細いギャップが浅く見えているとすると10 AUの ギャップは惑星起源であるという可能性も残されてい る.

最後に、表1に示した惑星質量の精度について言及 しておきたい、表1の見積もりでは β = 1.5を仮定し たが、ギャップの深さおよび幅はダストの性質(β の 値)に依存することにも注意する必要がある。例えば、 10 AUのギャップの場合、 β = 1または2とした場合 では、ギャップ幅はそれぞれ13.5 AU, 9 AUとなる。 従って、幅から見積もった惑星質量は3.3 $M_{\rm J}(\beta$ = 1 の とき)、1.3 $M_{\rm J}(\beta$ = 2 のとき)となる。このような β の 不定性から、表1の惑星質量の見積もりにはファクタ -2程度の不定性があると考えられる。また、ここで はダスト粒子は円盤ガスとよく混合していると仮定し たが、円盤粘性が小さな場合や円盤ガスの量が図5b の見積もりよりも小さい場合はダスト分布はガスの分 布と大きく違っているかもしれない. その場合には, ダストの濾過作用によって実際のガスのギャップの深 さ,幅は図5で見られるよりも大幅に浅く,狭くなる ことが知られている[16,17].したがって,ダスト分 布とガス分布が大きく乖離している場合は,実際の惑 星質量は表1の見積もりよりも大幅に小さくなる.よ り正確な惑星質量の見積もりを行うためには,ガスと ダストの分布の違いといった円盤の詳細な物理状態の 解明が必要である.

5. まとめと今後の展望

本稿では、原始惑星系円盤のギャップ構造が惑星で 形成されたとすると、円盤観測から得られるデータで どのように惑星質量を見積もるのか、その方法を紹介 した.また、その方法をALMAで観測されたHL Tau円盤のギャップ構造に適用し、ギャップの中に惑 星が存在した場合、その質量を見積もった、今後、 ALMAやすばる望遠鏡によって今回紹介したHL Tau 円盤の観測のような惑星形成領域まで分解したギャッ プ構造を持つ原始惑星系円盤の直接撮像イメージが多 数得られることが期待される.このような観測結果を 説明する際に,我々のモデルは非常に有用であろう.

原始惑星系円盤と惑星との相互作用は,系外惑星の 質量・軌道の多様性を生み出す起源の1つであると考 えられている.円盤ギャップの観測から円盤内の惑星 を特定することで,円盤内ので惑星進化に観測的な面 から制限を与えることができるだろう.今後,このよ うに原始惑星系円盤の観測の面からも系外惑星の多様 性の起源に迫ることができると期待される.

謝 辞

本原稿は、田中秀和氏、武藤恭之氏、谷川享行氏、 竹内拓氏、塚越崇氏、百瀬宗武氏との共同研究の結果 をまとめたものです. 共同研究者の方々には、この場 をお借りしてお礼申し上げます.また.筆者が博士課 程の内からご指導をいただきました田中秀和氏には特 に感謝申し上げます. 筆者はこれまでに、新学術領域 研究(23103004, 26103701), ALMA共同利用PIサポ ートプログラム(NAOI-ALMA-0135)の助成を受けま した. また、本稿の図5はALMA長基線観測キャン ペーンで得られたデータを用いています。本研究で行 った数値流体シミュレーションは国立天文台シュミレ ーションプロジェクトのスーパコンピュータCray XC30と北海道大学低温科学研究所の環オホーツク情 報システムを用いて行いました、最後に本稿の執筆の 機会を与えていただき、また注意深く原稿を読んでく ださった成田憲保氏に感謝いたします.

参考文献

- [1] Kanagawa, K. D. et al., 2015, MNRAS 448, 994.
- [2] Kanagawa, K. D. et al., 2015, ApJ 806, L15.
- [3] Kanagawa, K. D. et al., submitted, ApJ.
- [4] Duffell, P. C., 2015, ApJ 807, L11.
- [5] Varniere, P. et al., 2004, ApJ 612, 1152.
- [6] Duffell, P. C. and MacFadyen, A. I., 2013, ApJ 769, 41.
- [7] Casassus, S. et al., 2013, Nature 493, 191.

- [8] Fukagawa, M. et al., 2013, PASJ 65, L14.
- [9] Osorio, M. et al., 2014, ApJ 791, L36.
- [10] ALMA Partnership, et al., 2015, ApJ 808, L3.
- [11] Okuzumi, S. et al., 2015, ArXiv e-prints.
- [12] Flock, M. et al., 2015, A&A 574, A68.
- [13] Takahashi, S. Z. and Inutsuka, S.-i., 2014, ApJ 794, 55.
- [14] Fung, J. et al., 2014, ApJ 782, 88.
- [15] Shakura, N. I. and Sunyaev, R. A., 1973, A&A 24, 337.
- [16] Zhu, Z. et al., 2012, ApJ 755, 6.
- [17] Dong, R. et al., 2015, ApJ 809, 93.

ー番星へ行こう! 日本の金星探査機の挑戦 その25 ~搭載機器5年越しの覚醒~

山﨑 敦¹, 山田 学², 福原 哲哉³, 大月 祥子⁴, 田口 真⁵, 岩上 直幹⁶, 佐藤 毅彦¹, 今村 剛¹, あかつきプロジェクトチーム

(要旨) 2015年7月に軌道制御を行った金星探査機「あかつき」は,金星周回軌道投入への再挑戦へ向けて着々 と準備を進めている.搭載機器についても再度機能チェックを行った.4から5年間電源を入れていなかっ たが,機能チェックの結果は良好で周回軌道投入直後から観測が開始できる見通しが立った.

1. これまでの道のり

2010年5月21日に種子島宇宙センターよりH-IIAロ ケット17号機にて打ち上げられた「あかつき」に搭載 された観測機器は、2010年5月から6月にかけて初期 チェックアウト運用を実施した.各機器は2010年12 月の金星周回軌道投入失敗直後の金星撮像[1,2], 2011年の測光観測[3,4]を実施した後,温度条件を鑑 みて電源オフとして休眠状態に入った.2015年7月の 軌道制御[5]の結果金星周回軌道投入を再挑戦できる 遷移軌道に入った.金星周回軌道投入運用直後から観 測が開始できるように、2015年10月に搭載機器の健 全性を再確認した.

2. 初期立上げ運用リターンズ

2.1 準備

2010年の初期運用の記憶と記録を遡り,事前準備 に十分な時間を費やした.初期動作手順書により消費

- 1. 情報通信研究機構
 4. 専修大学
- 4. 导修八子 5. 立教大学
- 6. 東京大学

電力と温度の正常範囲,ステータス確認項目等を確認 し、5年前の記憶をあらかじめ頭の引き出しからも出 しておいた.ただし、前回と異なる点は地球との距離 であり、往復伝搬遅延時間が10分程度でありコマン ド送信してから動作確認までにこの時間が必要である こと、太陽に近いために温度条件から衛星の向きに制 約があり高利得アンテナを地球に向けることができず 中利得アンテナによる低い通信レート下でのデータ確 認を強いられたこと、画像データのみならず観測中ス テータスの確認も一旦データレコーダに記録した後に 再生する必要があること、である、このため、5年前 に実施した初期動作手順書通りではことが運ばなかっ た、温度や軌道・姿勢の制約条件から、チェックアウ ト項目は、1 µmカメラ(IR1)、紫外イメージャ(UVI)、 中間赤外カメラ(LIR)の各カメラ撮像、2µmカメラ (IR2)の冷凍機駆動エレキの消費電力とした。

2.2 結果

2.2.1 紫外イメージャ(UVI)

2015年10月14日実施.一次電源(PCU)からUVIの 制御エレキへ短時間の電源供給を行い正常な消費電力 値であることを確認した後,観測シーケンスにより試 験観測を実施した.再生した観測中ステータスよりフ ィルタホイールが正常に回転したことを確認するとと もに,図1に示すチェックアウト用の撮像を取得した.

^{1.} 宇宙航空研究開発機構

^{2.} 千葉工業大学

yamazaki@stp.isas.jaxa.jp

 図1:UVI取得画像.使用フィルタ365nm(昼用),露出時間11秒, 機上画像処理にてスミア補正済み.

図2:LIR取得画像.

明るい恒星は視野内に存在しなかったためダーク画像 のような深宇宙画像である.5年にわたるクルーズ期 間に浴びた放射線の影響で白傷だらけになっているこ とを心配していたが,明らかな白傷のピクセルは見当 たらず検出器が健全であることを示している.

2.2.2 中間赤外カメラ(LIR)

2015年10月16日実施.一次電源(PCU)からLIRカ メラの制御エレキへ短時間の電源供給を行い正常な消 費電力値であることを確認した後,観測シーケンスに より試験観測を実施した.再生した観測中ステータス よりペルチェ動作による温度安定性,シャッターの正 常駆動を確認するとともに,図2に示すチェックアウ

図3: IR1取得画像. 使用フィルタ0.90um(昼用), 機上画像処理 にてダーク引き済み.

ト用の撮像を取得した. LIRの深宇宙画像は, 視野中 央部のレンズと周辺部のバッフルからの熱放射を測定 することとなる. 相対的に冷えたレンズと温かいバッ フル像の周辺増光がみられる期待通りの画像であり, 過去の試験結果と比較しても検出器が健全であること が示された.

2.2.3 1µmカメラ(IR1)

2015年10月19日実施.一次電源(PCU)からIR 1/2 カメラの制御エレキへ短時間の電源供給を行い正常な 消費電力値であることを確認した後,観測シーケンス により試験観測を実施した.再生した観測中ステータ スよりフィルタホイールが正常に回転したことを確認 するとともに,図3に示すチェックアウト用の撮像を 取得した.IR1の深宇宙画像は,明るい恒星は視野内 に存在しなかったためダーク画像のような深宇宙画像 での評価となるが,明らかなデッドピクセルは見当た らないことが確認できた.また,CALランプを点灯 させた画像も取得し,検出器の健全であることを示し ている.

2.2.4 2μmカメラ(IR2)冷凍機

2015年10月19日実施.一次電源(PCU)から冷凍機 駆動エレキへ短時間の電源供給を行い正常な消費電力 値であることを確認した.

2.2.5 ROI (Region of Interest)機能の実装

再生データ量リソースを有効に活用するために、カ

メラの撮像領域のうち金星像が写る領域の画像データ のみデータレコーダに記録するROI機能を追加した. 小惑星探査機「はやぶさ2」からの逆輸入技術である. 打上当初の計画より遠金点が遠い金星周回軌道に投入 されることになり遠金点付近での観測は解像度が低下 することになったが,このROI機能により,記録す る画像領域を取捨選択することが可能となり,データ レコーダに記録可能な画像枚数を増やして,画像品質 の低下をある程度補うことができるようになった.そ の機能確認を2015年10月26日実施した.ROI機能を 使ったIR1画像が地上で問題なく復元されることを確 認した.

3. 地上データ処理

投入軌道変更に伴う制約からROI画像処理が追加 となった.これに対応するべく地上データ処理システ ムを改良する必要があった.今回の再チェックアウト 運用は,地上データ処理システムを最上流から試験で きる最初の画像データであり,この機会を活用し地上 データ処理システムの検証を行った.予定通りの処理 が行われたことを確認した.

4. まとめ

振り返るとUVIは1528日,LIRは1530日,IR1は 1533日ぶりに撮像観測を実施した.一旦動作させた 観測機器をこれほどの時間をおいて再度観測した経験 はなく,再立ち上げ後正常に動作するのか非常に不安 であった.しかしながら,私たちの心配をよそに各搭 載カメラの画像は特に異常事態には陥っていない.機 器開発の実力が証明された格好である.感度劣化計測 については今後恒星観測などで較正する計画である.

7月の軌道修正制御[4]の結果,「あかつき」は打ち上 げから2026日目,2015年12月7日に金星に到着,金 星周回軌道に投入される予定である.もちろんプロジ ェクトチームは遷移軌道飛翔中から周到かつ詳細な試 験・調整を行い,万端の体制で周回軌道投入運用に臨 む所存である.この文面が世に出るころには金星周回 軌道投入成否の結果が出ているが,金星観測に勤しん でいることを思い描いている.大気循環のメカニズム の解明から地球との比較による「惑星気象学」の発展 に向けて私たちの当初の願いが結実することを期待する.

謝 辞

「あかつき」の運用に関して紙面に記しつくせない 関係各方面のたくさんの方々に多大なるご協力・ご支 援をいただいております.この場を借りて深甚の謝意 を表します.

参考文献

- [1] 中村正人, 2011, 遊星人 20, 68.
- [2] Taguchi, M. et al., 2012, Icarus 219, 502.
- [3] 山田学ほか, 2011, 遊星人 20, 222.
- [4] Satoh, T. et al., 2015, Icarus 248, 213.
- [5] 廣瀬史子, あかつきプロジェクトチーム, 2015, 遊星人 24, 126.

遊星百景「私のお気に入りの地形」 その2 ~Baltis Vallis~

押上 祥子¹

前号からスタートした連載コラムの二回目は、地球 の双子星と言われる金星の地形を取り上げます.初回 は月の代表的な火山地形である蛇行谷でしたが. 金星 にもそれと瓜二つの谷地形が存在します. 金星には火 山性起源をもつと思われる平原やドーム構造、その他 の大規模構造が豊富です。蛇行谷を始めとする谷地形 の多くも火山性起源と考えられており、谷地形だけで も200以上存在していることが知られています。金星 の谷地形は月の谷地形と比べると多様性に富んでおり、 平面的な形態的特徴に基づいて9つものタイプに分類 されています. その中の1つが蛇行谷です. コブラの 頭のような窪みと尻尾に向かって先細りする曲がりく ねった胴体が特徴です。コブラヘッド状の窪みは火口 であると考えられ、火口から流出した熱い溶岩が徐々 に冷えながら天体表面を侵食したことが推測されます。 その他に、金星には人工的な谷地形である"運河"のよ うな特徴をもつタイプの谷も存在します、運河谷は全 長が数百kmから数千kmに及ぶにも関わらず,分岐 や合流はほとんどなく、幅がほぼ一定であるという特 徴を持っています.また.その形成年代は比較的古い と考えられています[e.g., 1].

今回紹介するのは運河谷の一つ,「Baltis Vallis」で す(図1). 私にとってこの運河谷は,お気に入りのレ ベルを超えた思い入れの強い地形です.この連載コラ ムの初回の著者であり私の兄弟子にあたる本田親寿さ んにとっての月の蛇行谷,といったところでしょうか. 私が学部四年生の時に卒業論文の研究対象として選ん だ地形であり,その後,博士号を取得するまで格闘し 続けた,私の研究人生のまさに原点です.

「Baltis Vallis」は全長約6800 kmで,地球で最も長 い谷地形であるナイル川を僅かに上回り,現在太陽系 最長の谷地形とされています.その不可解な形態的特 徴から,「Baltis Vallis」を始めとする運河谷の形成過 程について,様々な仮説が唱えられています.私は金 星探査機マゼランの合成開口レーダ画像を解析し,推 定される深さ変化や横断面形状に基づいて,この運河 谷は低温で噴出した炭酸塩の溶岩流によって形成され たのではないかと考えました[2].多くの仮説が溶岩 流を前提としていたのに対し,地球の海底谷のように, 金星大気が生み出す密度流によって形成されたとする 仮説も新たに登場しました[3].金星の谷地形の面白 さは、タイプ毎に異なる形成年代と、多様な形態的特 徴から推測される多様な形成過程から、金星の物質循 環や熱進化などに至るまで想像を巡らすことができる 点ではないかと思います.

図1:北緯49度,東経165度付近のマゼラン合成開口レーダ画像 (PIA00225を改変).

[1] Komatsu, G. et al., 1993, Icarus 102, 1.

- [2] Oshigami, S. and Namiki, N., 2007, Icarus 190, 1.
- [3] Waltham, D. et al., 2008, J. Geophys. Res. 113, E02012.

^{1.} 国立天文台RISE月惑星探查検討室

oshigami.shoko@nao.ac.jp

衛星系研究会を2015年7月21-22日の日程で,北 海道大学低温科学研究所の主催により開催した.今年 で第4回となる本研究会は,衛星(系)を対象とした研 究を行う様々な分野の研究者が相互に交流することを 目的として,2012年に発足したものである.

今回は、「衛星系と噴火現象」というテーマを設定 した.地球外天体におけるvolcanism(噴火・噴出現 象)は、過去の活動も含めれば太陽系内でも様々な天 体で確認されている.特に、外惑星の衛星系では、木 星衛星イオが現在も活発にシリケイトマグマを噴出し ていることが発見されて注目を集め、さらに最近では、 エウロパや土星衛星エンケラドゥスで大規模な水蒸気 噴出が確認された.この主な熱源は衛星系特有のコン パクトな軌道に起因する潮汐加熱であると考えられて おり、volcanism は巨大惑星の衛星系では珍しくない 現象であることが分かってきた.このように、衛星系 のvolcanism は地球でのそれと比べ, 化学的・物理的 特徴およびその規模など様々な面で異なっているため、 その理解は現時点では極めて限定的である. そこで本 研究会では、まず衛星における volcanism を横断的に 概観し、地球のそれと比較しつつ特徴を整理し理解を 深めることで、volcanismから衛星系形成の起源に迫 るための糸口を探ることを目的とした.

そこで、衛星のvolcanismを鍵にして、4名の招待 講演者にそれぞれの専門領域についてレビューを行っ

- 2. 東京工業大学 地球生命研究所
- 3. 東京大学 大学院理学研究科
- 4. 北海道大学 大学院理学研究科
- 5. 神戸大学 大学院理学研究科
- 6. 北海道大学 低温科学研究所
- 7. 東京工業大学 大学院理工学研究科
- t-tanigawa@med.uoeh-u.ac.jp

図1:研究会中の様子.

て頂いた.まず,衛星系における volcanism や衛星熱 進化の熱源として鍵となる,惑星と衛星の潮汐相互作 用の理論について,東大地震研の栗田敬氏にご講演頂 いた.潮汐相互作用は力学的に古くから考えられてい る問題であり,その基礎的部分から,例えば軌道進化 とカップルした潮汐熱進化についての最新の話題まで わかりやすいレビューを行って頂いた.

次に,地球上における噴火現象について,九大の寅 丸敦志氏にレビューをして頂いた.地球については当 然ながら詳細な観測例がたくさんあるため,今回は主 にそれらをどのように分類するとわかりやすいかにつ いてお話し頂いた.出席者の多くは惑星科学や天文が 専門のため,地球上における噴火現象についてのこの ような基礎的なレビューは大変役に立ったのではない かと思われる.また,間欠泉のメカニズムについての 興味深い模擬実験もお見せ頂き,衛星における間欠泉 との関連性についても議論がなされた.

2013年に打ち上げられ、現在エキサイティングな

^{1.} 産業医科大学 医学部

結果を提供し続けている惑星分光観測衛星「ひさき (SPRINT-A)」の成果について、東北大学の土屋史紀 氏と理研の木村智樹氏にそれぞれの立場からご講演頂 いた.今回は、詳細に観測が行われているイオ・プラ ズマトーラスについての最新の結果を中心にお話し頂 いた.イオ火山から噴出した物質の一部は衛星重力圏 を脱出し、イオ軌道付近にトーラス状のプラズマ領域 を作り、ひさき衛星はこの領域を重点的に観測してい るわけだが、今回のお二人のお話から、このプラズマ トーラスの観測を通じて現在のイオ火山についての情 報が多く得られることを実感した.

イオやエンケラドゥスに代表される衛星からの噴出 現象,およびそれらが重力圏を脱出して衛星軌道上な どに形成するより大きな構造の観測を通じて,これま で主に理論的に考えるしかなかった衛星の軌道進化・ 衛星の内部熱進化という問題が,実証可能になりつつ あることを実感させられた.さらに,我々の良く理解 している地球における噴火現象からの外挿を効かせつ つ研究を進めることの重要性も認識できた.また,一 般講演・ポスター講演も,(個別に触れることはしな いが)今回のテーマに直接的に関係するしないにかか わらず,招待講演の内容の間をつなぐものもたくさん あり,充実したものだった.本研究会での各講演テー マが今後さらに進展することで,衛星系を鍵とした太 陽系・惑星系形成史の統合的に理解が進むことを願っ ており,また本研究会がその一助となれば幸いである.

図2:集合写真.

最後に,招待講演者の皆さんをはじめ,すべての発 表者の方々,および参加して会を盛り上げて頂いたす べての参加者の皆様に感謝したい.また,研究会の準 備を積極的に手伝って頂いた低温研・理論惑星グルー プの皆さんに感謝したい.低温科学研究所の共同研究 により参加者の旅費を支援して頂いた.参加申込シス テム及び講演資料の保管・公開にはCPSのサーバを 使わせて頂いた.

<u>プログラム</u>¹

- •09:35-09:40 低温科学研究所所長挨拶
- •09:40-11:40 栗田 敬(東大地震研) 衛星火山と 潮汐相互作用
- •11:40-12:00 (ポスター講演の紹介)
- •12:00-13:30 (昼休み・個別討論)
- •13:30-15:30 寅丸 敦志(九大理) 地球における 噴火現象
- 15:30-16:30 (ポスターコアタイム)
- 16:30-17:00 関根 康人(東大理) 氷衛星における地質現象の再現実験と理論研究:レビュー
- 17:00-17:30 鎌田 俊一(北大理) Tidal deformation of Ganymede covered with a conductive ice shell
- •17:30-18:00 平田 直之(神大理) 氷衛星のクレ ーター生成率についての考察

•09:30-11:00 土屋 史紀(東北大) ひさき衛星が とらえた衛星イオの火山活動変動

- 11:00-11:30 三上 峻(北大理) 巨大氷衛星の原 始大気
- 11:30-13:00 (昼休み・個別討論)

7/22

- 13:00-14:30 木村 智樹(理研) 衛星周囲のプラズマ環境と惑星-衛星電磁相互作用
- 14:30-15:00 末次 竜(神大理) ガス抵抗による 微惑星の捕獲過程
- 15:30-16:00 倉本 圭(北大理) 火星衛星サンプ ルリターン計画とその科学について
- 16:00-17:00 (総合討論)

━━━━━━ ポスター講演 ━━━━━

・古賀 亮一(東北大理) ひさき衛星を用いたイオ

1. 講演資料はhttps://www.cps-jp.org/~satellite/で公開している.

- 野口 里奈(東大地震研) 可視画像・地形データ を用いた火星の火砕丘の判別及びそれから推察される火星内部熱源の存在形態
- ・樋口 有理可(東工大理) 衛星の捕獲: 周太陽軌 道から周惑星軌道への移行
- ・樋口 有理可(東工大理) フォボス・ダイモスの 力学的起源のレビュー2
- 金川和弘(北大低温研)巨大惑星による原始惑 星系円盤ギャップ構造形成の理論モデルと観測への応用
- ・谷川 享行(産医大医) 周惑星円盤へのガス流入 履歴
- 田中 今日子(北大低温研)液相からの気泡核生成の大規模分子動力学計算と古典的理論の改良
- 山本 広大(京大理) 衛星大気の観測的研究の検
 討
- 加藤 伸祐(名大環) 月の海の組成・地形解析からみた月マントルの熱進化史

「iSALE 講習会」参加報告

脇田 茂

iSALE講習会が2015年8月5日から8日にかけて千 葉工業大学津田沼キャンパスにて開催された.

iSALE(impact SALE)とは数値衝突流体計算コード であり, SALE(Simplified Arbitary Lagrangian Eulerian) コードを基にして開発された.弾性・塑性モデル,破 壊モデル,空隙モデルなどが導入されており,地球惑 星科学分野での天体衝突等を扱えるようになっている. iSALEは科学目的に関する限りは申請を行うことで 使用できるコードで,欧米のみならず日本の研究者ら に利用されている.

千葉工業大学の黒澤耕介氏が中心となって立ち上げ られた「iSALE users group in Japan」には36人が参 加しており,日本での惑星科学や衝突科学研究者らへ iSALEを広げる役割を担っている[1].グループの wikiページ(https://www.wakusei.jp/~impact/wiki/ iSALE)にはiSALEのインストール方法から使用法ま で多彩な情報がまとめて記載されているので、興味が ある方は是非訪れてもらいたい.黒澤氏らグループの メンバーが中心となって、2014年2月には第一回 iSALE勉強会[2],2014年10月には第二回勉強会[3]が 開催されてきた.過去の勉強会以上にiSALEの実践 と解析に重きを置いた4日間にわたる講習会が開催さ れたので、その報告を行う.

今回の講習会では実践が主のためiSALEのインス トールに関する相談会が初日に開かれて、参加者全員 がiSALEが稼働可能な環境を整えることができた(ノ ートパソコンにインストールできずにデスクトップを 持ち込むことになった参加者もいたが). iSALEはソ ースコードが配布されるため各自でコンパイルする必 要がある. コンパイルに慣れていないと戸惑う事もあ るかもしれないが、これまでにいくつかのプラットフ ォームに応じたiSALEのインストールマニュアルが 「iSALE users group in Japan」のwikiページに用意さ れているのでご安心頂きたい、それでもうまくできな い場合にはグループに問い合わせると優しく教えても らうことができる(可能性が高い).2日目の午前中に は黒澤講師からiSALEに関する説明が行われた. iSALEの簡単な使用法はもちろんのこと、衝突流体 計算の基礎から状態方程式に関する話題までと、短い 時間ながらも密度の濃い授業内容であった、午後から はいよいよiSALEの実践となり、まずはiSALEを動 かす上で重要となる初期条件を設定するファイルの説 明, iSALEに付属されている計算結果の描画ソフト (VIMoD)の使用方法の説明がなされた. 自分で計算 に必要なパラメータを変更してiSALEを動かすこと ができるようになり、VIMoDを使用して計算結果を 簡単に視覚的に確認することができるようになった.

3日目からは本格的な解析方法を実践していった. VIMoDでは定性的な議論には向いているが、定量的 な議論にはもう少し踏み込んだ方法が必要となる. iSALEでは計算領域を碁盤の目状に区切ることで計 算を行っているが、トレーサ粒子を設定することで計 算時間内の粒子の移動や温度圧力履歴を追うことがで きるようにもなっている.トレーサー粒子の結果を出 力するにはiSALEに付属されているもう一つの計算 結果の描画ソフト(iSALEPlot)を用いた.そこからさ らなる解析を行うためには、プログラム言語の一つで

^{1.} 国立天文台 天文シミュレーションプロジェクト shigeru@cfca, jp

^[1] 黒澤耕介ほか, 2014, 遊星人 23, 103.

^[2] 常晃, 2014, 遊星人 23, 156.

^[3] 末次竜, 2015, 遊星人 24, 63.

図1:参加者の集合写真.

あるC言語を用いた解析とオープンソースの描画ソフ トであるgnuplotを用いた解析結果の出力も必要とな ったのだが,これらに不慣れな参加者たち[図1]は大 いに苦戦することになった.しかし,4日目ともなる とiSALEに慣れて余裕が出てきたのか,各自の研究 に応用できそうな設定方法を学びたいなど意欲的な質 間も増えてきた.本来の予定にはなかったと思われる ことであっても黒澤講師が丁寧に対応してくれたおか げで,初期条件を少し変更するだけで衝突体や被衝突 体を好みの形状に変更することができるようになり, よりiSALEへの理解を深めることができた.トレー サー粒子のある時刻における衝突点からの距離,角度, そして速度までの解析といった提示されたお題をこな すことができ,最終的にはトレーサー粒子の速度ベク トルの描画[図2]までを行えるようになった. 月や火星の衛星などの天体への衝突過程にiSALE を使いたい方や隕石に見られる鉱物と衝突を組み合わ せた研究をやりたい方など参加者はそれぞれ興味が異 なっていたが, iSALEの実行からトレーサー粒子の 解析までを全員が行えるようになったのは, 講師の指 導と参加者の努力の成果であろう. 今回の講習会の内 容を各人の研究に活かしていくためには, iSALEを 使い続けることこそが重要であろうと講習会中の昼食 時などにも話題になった.本記事を読まれている参加 者の方々が今まさにiSALEを使用した研究を行って いるのであれば同じ参加者としても嬉しい限りである. 最後になったが,本講習会を企画された黒澤講師を始 めとする開催場所である千葉工業大学の皆様方に感謝 したい.

図2:講習会を受講した成果[トレーサー粒子の圧力とその速度ベクトルの時間変化図].

2009年に始まった月惑星探査データ解析実習会は 2015年9月に8回目が開催されました.本実習会は普 段惑星探査データから自分の研究との間に少し距離が ある方を対象にしています.本実習会が少しでも両者 の距離を詰めていただくための一助となることを期待 しています.

8回目を迎えた今回の実習内容は,6回目の内容を 発展する形で実施することができました. 講師は近畿 大学の道上達広さん,APLのO.S. Barnouinさん,会 津大学の平田成さんに講師をお願いしました.実習会 には月惑星探査データ(特に画像)解析の初心者である 学部生から教職員レベルまでさまざまな技術・知識を 持った17名(学部生6名,大学院生5名,PD以上が6 名)が参加し,「はやぶさ」の取得した画像データの解 析を体験しました.

今回実習対象に取り上げたのは第1,6回目にテー マとした小惑星Itokawaでした.小惑星探査機「はや ぶさ2」が打ち上がってもうすぐ1年,初号機のデータ を振り返ってもらい解析手順などイメージしてもらう ことを目的としました.6回目は「形状モデル」に着目 した講義・演習を行いましたが,今回はAPLで開発 が続いているSmall Body Mapping Tool(SBMT)を利 用した探査データの表示および解析を中心とした演習 を行いました.今回はSBMTの開発を主導されてい るBarnouinさんによる詳細な説明が実習会の目玉と なりました.

初日は道上さん講演による小惑星boulder計測の科

chonda@u-aizu.ac.jp

学的意義と実例の紹介,2日目はBarnouinさんによる SBMTの詳説および平田さんによる会津大学で開発 しているGISアプリ(AiGIS)の紹介とそれに続いて3 日目午前中までSBMTを用いた解析実習および実習 報告会という流れで実習会が進みました。

前回の反省点として準備したツールの動作確認が十 分ではなく,動作可否が解析環境依存性に大きく依存 していた点がありましたが,今回も幾つか問題がでま した(特にWindows環境で問題がありました).大学 の個人または小さなグループベースで作成される汎用 な解析用アプリケーションに常に付きまとう課題でし ょう.開発元による十分なバグ出し作業は当然必要で すが,それに加えて多くの研究者に探査機到着の前に 利用してもらいフィードバックを受けることが大事な のではないかと感じました.

今回の実習をきっかけとしてより多くの月惑星探査 データを利用して頂き、皆さんの研究活動に活かされ ることを期待しております.

最後に、本実習会を資金面にてご支援いただいた日本惑星科学会、惑星科学研究センター(CPS)、会津大 学(国際戦略本部)に厚くお礼申し上げます。

開催日程:2015年9月27日13:40~9月29日14:00 **開催場所**:会津大学M11教室

- **主 催**:月惑星探查育英会
- 後 援:日本惑星科学会,惑星科学研究センター (CPS),会津大学

実習会の詳細および資料: https://www.cps-jp.

org/~tansaku/wiki/top/?school_mission-8

世話人:会津大学先端情報科学研究センタ宇宙情報科

会津大学先端情報科学研究センタ宇宙情報科学クラスタ
 東京大学大学院新領域創成科学研究科複雑理工学専攻
 会津大学大学院コンピュータ・情報システム学専攻

学クラスター同(会津大学)

- 講 師:道上 達広(近畿大学), O. S. Barnouin(APL, ジョンズ・ホプキンス大学), 平田 成(会津大学)
- **参加者**:17名(学部生6名,大学院生5名,PD以上が 6名)

参加者の声:

巽 瑛理(東京大学大学院新領域創成科学研究科複雑理 工学専攻)

画像というのは視覚を通して一度にわたしたちに詳 細な大量の情報をもたらしてくる.その性質から,火 を見るよりも明らか,などと思ってしまう節があり, 「画像があるのだから,計ればいいじゃないか」と思 いがちである.しかし,画像は3次元を2次元にして いるという時点で情報量を落としているため,実際に 2次元の画像から3次元の情報を読み取ることは思っ たよりも簡単ではない,と挑戦してみると初めてわか る.わたしたちの目であっても距離を推定するために ステレオ視している.さらに,探査データというのは 実験などのように常にベストなポジションでデータを 取得するわけではないので,その点にも難しさがある ことが分かった.

今回の実習では、小惑星の画像からどのように地理 情報を引き出すかということを学んだ.実際には、2 次元の画像から3次元形状モデルを作るという行程は すでに偉い人が行ってくれているので、下々の一人で あるわたしはそれを有難く活用させて戴く技術を学ん だと言った方が適当だろう.わたし自身は小惑星イト カワ上を模擬したクレーター形成実験や小惑星のクレ ーターに注目しスペクトル解析を行っている.そこで、 小惑星地形の計測やスペクトル解析結果と地形との比 較をしたいという欲求があった.この実習では、特に Small Body Mapping Tool(SMBT)を使って、それら のことに挑戦してみた.

イトカワの地形解析という意味では、2つの方法が あり、LIDARに基づく計測と3次元モデルに基づく 計測である。3次元モデル(Gaskellモデル)はもともと 2次元画像データから作られたものなので、3次元デ ータとしてより生のデータという意味ではLIDARの データであるが、LIDARの計測領域は限られている。 必ずしも3次元モデルとLIDARのデータは一致しな いので少し混乱するのだが、最初に大雑把に(といっ ても、very high resolution はかなり細かい凹凸を再 現している)3次元モデルで計測し、より細かい評価 をLIDARで行うのが良いようである。

解析データのマッピング機能(小惑星3次元モデル の表面に自分で作ったマップを貼り付ける)は非常に 有用だと感じた. 緯度経度指定したデータで全球地図 的なものを作ると簡単にマッピングできるようである. わたしが使ったデータはもう少し単純で, AMICAで 撮影された画像(トリミングなし)ものに色付けしたも のであり, これも機体やカメラの視点情報がすでに SMBTにあるため比較的簡単にできた(くるくる回せ てとても便利)ので, 今度は全球マップにも挑戦した いと思う.

このような解析はソフトウェアに頼らずやろうとす れば膨大な時間がかかることであるが、実習の機会を 設けていただきわずか3日でできるようになったと思 うとお得な気分である.3次元モデル、ソフトウェア の開発者の方々、実習会を開催していただいた方々に 感謝申し上げたい.

昆 憲英(会津大学大学院コンピュータ・情報システム 学専攻)

9月27日から29日の3日間にかけて,第8回惑星探 査データ解析実習会が開催された.今回は,日本と海 外の各大学や研究機関の方々が参加されたグローバル な実習会となった.このような実習会への参加は初め てであり,自分は毎日程よい緊張感があった事を覚え ている.

初日は、近畿大学の道上達広さんよる、小惑星 Boulder 計測の科学的意義、及び、解析実例に関する 講義をしていただいた.小惑星のBoulder のサイズや 数を計測するために、ツールを使用した調査や、実際 の衝突実験を行う方法があることを知り、また、それ らの解析結果が、小惑星の形成過程を推測するために 重要である事を学ぶことができた.

次に、惑星探査データ解析を行うためのツールの使 い方を、実習を通して学んだ、今回使用した解析ツー ルは、天体の画像やデータの可視化を行う事を目的と したSAOImage DS9、及び、The Johns Hopkins University Applied physics Laboratory(以下 APL)で開発された、 小惑星を対象としたデータ解析ツールであるSmall Body Mapping Tools(以下 SBMT)を使用した、今回

は特に、SBMTを用いたデータ解析実習を行った. SBMTの実習は、会津大学の平田先生、APLの Olivier Barnouin さんに講師をしていただいた。今回 自分は、研究対象である小惑星イトカワを用いて、任 意地点の標高を調査するためのツールの使用方法を学 ぶ事を目的とした.SBMTの画面上には、小惑星の3 次元形状モデルが表示されており、自分が調べたい場 所を直感的に指定可能であるため、任意の場所の小惑 星データ解析を行うという点で、非常に利用しやすい ツールだと感じた、そして、今回の講習の目的として いた、イトカワの標高の解析方法を学ぶことができた. この講習を受講する前に、SBMTを使用した経験が あったが、ツールの機能が多く、使用方法を理解でき ない所があった.しかし、この講習を通して、先生や 学生の方々に教えていただき, SBMTの様々な使い 方を身につけることができた。今回の講習で学んだこ とを、今後の研究で活かしたいと思う、

最後に,この実習会を通して,解析ツールの使い方 を学ぶだけでなく,他の大学の先生や学生の方々と交 流することができ,とても良い機会であった.他大学 の研究活動や学生生活の話をお聞きし,とても良い刺 激を受けることができた.この実習会では,皆様には 大変お世話になりました.本当にありがとうございま した.

図1:実習会の講師および参加者一同.

今から遡ること30年前,京都大学の林忠四郎らに よって太陽系の形成に関する理論的枠組みがまとめら れた.この太陽系形成標準モデルは「京都モデル」と 呼ばれ,物理法則を理論的に積み上げていくことで, 複雑な太陽系の成り立ちを見事に説明した.その後も 細かなモデルの修正は行われていったものの,太陽系 形成論の根幹が揺らぐことはなかった.これにより惑 星形成の研究は,良く言えば成熟期を迎えた,悪く言 えば重箱の隅をつつくだけの研究分野になってしまっ たかに見えた・・・.

ところがその10年後, 我々は衝撃的な現実を目の 当たりにする. 1995年に最初に発見された系外惑星 は「ホットジュピター」と呼ばれる, 太陽系には存在 しないタイプの惑星だった. その後も「エキセントリ ックジュピター」や「スーパーアース」など, 太陽系の 常識を超えた異形の惑星たちの姿が次々と明らかにな っていく. こうした惑星たちの存在は, 従来の太陽系 形成論では予言されておらず, 惑星形成理論そのもの に対して大きな変更を迫ることになった.

これにより,惑星形成の分野は再び盛り上がりを見 せる.太陽系というただ1つのサンプルを説明するた めに作られた「太陽系形成論」を超克し,大量の系外 惑星系についての多様性や普遍性を統計的に議論する 「汎惑星形成理論」を構築すべく,世界中ですさまじ い勢いで研究が進められていった.他分野からの新規 参入者も多く,現在最も盛り上がっている研究分野の 一つであると言っても過言ではない.しかしその一方 で,短期間のうちに急激に発展してきた学問分野であ るため、標準的なテキストはわずかに数えるほどしか 出版されておらず、特に学部生レベルで読み通すこと のできる教科書に関しては、国内外通してもほぼ皆無 だというのが現状であった。

そこで、本書の登場である、本書の主なターゲット は、惑星形成の分野に魅力を感じ始めている学部生や、 これから本格的に研究をスタートさせようとしている 大学院生である. 学部レベルの物理学・物理数学の知 識さえあれば、最新の惑星形成理論の枠組みや各論を 無理なく学ぶことができるようになっている。特に、 複雑な式の導出を厳密に追うようなことはせず、むし ろその背後にある物理の本質を直感的に理解できるよ う、丁寧に説明を行っている点が本書の最大の特徴で ある.読者は、単に知識をつけるだけでなく、物理的 なセンスも身につけることができる. さらに最終章で は「惑星分布生成モデル」の概要についても簡潔にま とめられており、理論モデルがどのように組み上げら れていくのか、その雰囲気を味わうことができるよう になっている.研究者を志す読者にとっては、研究の 「方法論」を学べる貴重なテキストでもあるといえる. 以上のとおり,多角的な学びが可能な有意義な一冊と して、多くの学生に一読を勧めたい.

さて、2015年は人類初の系外惑星発見から20周年 の年である.これはつまり、系外惑星が発見された年 に生まれた子どもたちが、いよいよ大学で専門的な勉 強を始めようとしている年でもあるわけだ.彼ら彼女 らが、本書を通して惑星形成の研究の面白さを知り、 様々な形でこの分野を一緒に盛り上げていってくれる ことを、同じ分野の研究者のひとりとして楽しみにし ている.

^{1.} 京都大学 大学院理学研究科 宇宙物理学教室 takanori@kusastro.kyoto-u.ac.jp

JSPS Information

◇日本惑星科学会第112回運営委員会議事録 ◇日本惑星科学会第44回総会議事録 ◇日本惑星科学会第113回運営委員会議事録 ◇日本惑星科学会賛助会員名簿 ◇日本惑星科学会主催・共催・協賛・後援の研究会情報

◇日本惑星科学会第112回運営委員会議事録

期 間:2015年8月27日(木)~8月31日(月)

議 題:学会賞選考委員の新任の承認

運営委員:

倉本 圭,渡邊 誠一郎, 荒川 政彦,田近 英一,中村 昭子,千秋 博紀,中本 泰史,並木 則行,平田 成, 林 祥介,井田 茂,和田 浩二,春山 純一,竹広 真一,諸田 智克,永原 裕子,橘 省吾,はしもと じょーじ, 小久保 英一郎,荒井 朋子,佐々木 晶,生駒 大洋,小林 直樹 成立条件:期間内に議決返信のあった者を委員会出席とみなす 議決方法:上記期間内に e-mail により投票

議題:学会賞選考委員の新任の承認

*谷川享行(産業医科大)

★議決は可否による. [可・否]

なお,これに伴って現職学会賞選考委員の竹内拓(東工大)は退任とする. 議題は全会一致で承認された(可23,否0).

◇日本惑星科学会第44回総会議事録

- 日 時:2015年10月15日(木)16:20-17:20
- 場 所:東京工業大学大岡山キャンパス地球生命研究所ELSI-1 1階東側ホール 〒152-8550 東京都目黒区大岡山2-12-1
- 正会員:630
- 定足数:63
- 参加人数:84名(開会時)(これに加えて非会員の傍聴者3名)

>109名(議事3.1採択時)>109名(議事3.2採択時)

- 委任状:58通(ただし、内1通分は提出者が総会に参加したため無効)
- 議 長:56通
- 倉本 圭会員:1通

はしもと じょーじ会員:1通

1. 開会宣言

諸田総務専門委員長が開会を宣言.

2. 議長団選出

運営委員会からの推薦で議長に薮田ひかる会員,書記に坂谷尚哉会員が選出された.

- 3. 議 事
 - 3.1. 第13期下期(2015年度)中間報告
 - ·会計報告(竹広財務専門委員長)

収入・支出ともにほぼ予算通りに進んでいる.支出が若干多めであり(消費税8%の影響),今後注意が 必要.

· 各種専門委員会報告

なし

- ・質疑応答及び討論
- なし
- ・採択

第13期下期活動報告の採択が行われ, 賛成:167(うち出席者109), 反対:0, 保留:0により採択された. 注)総会時には出席者を111名としたが, 非会員が含まれていたため後日109名に訂正.

3.2. 第14期上期(2016年度)予算案

·説明(竹広財務専門委員長)

以下の資料修正箇所が報告された.

・収入の部 2016年予算額

前期繰越収支差額 → 7,599,063

・支出の部 2016年予算額

原稿起こし、カラーページ費用→100,000

当期収支差額 → -663,600

次期繰越収支差額 → 6,935,463

- 2015度から、以下の変更があった.
 - 収入: 賛助会員が減少し, 前年度から-20万円

会費滞納分を70万円に増額

- 支出: EPS分担金が10万から20万に値上がり.
 - サーバー基礎開発費30万円.
 - カラーページ費用を0円とする(自己負担).
- 倉本会長より,
 - 今後の消費税増税もあるため、改善が求められる.
 - 原稿費や学会賞,研究会補助の支出を考え直さなくてはならない.
 - 会員数を増やす努力も必要.

が伝えられた.

- ・質疑応答及び討論
 - なし
- ・採択

第14期上期予算案の採択が行われ、賛成:167(うち出席者109)、反対:0、保留:0により採択された.

注)総会時には出席者を111名としたが、非会員が含まれていたため後日109名に訂正.

- 4. 報告事項
 - 4.1. 自然災害に伴う会費免除措置について(竹広財務専門委員長)

現時点での申請者無し、2016年1月中旬締め切り予定なので、早めに申請を、

4.2. 学会賞授賞式: 2014年度最優秀研究者賞および 2015年度最優秀発表賞 (中村学会賞選考委員長)

2014年度最優秀研究者賞の授賞式は記念講演会の前に行われる予定.

2015年度最優秀発表賞(中村学会賞選考委員長)

11名の応募があったが、資格審査・予備審査を経て、6名を本審査対象者として選出した.

以下の2人が受賞し、倉本会長から表彰状・副賞が送られた.

- ・田中 佑希 会員「磁気流体波動がガス惑星の大気散逸と大気構造に与える影響」
- ・田崎 亮 会員「原始惑星系円盤における高空隙率出すとの光学特性とその応用」

中村学会賞選考委員長より,選考の経緯と講評の説明があった.

受賞者からの挨拶があった.

4.3. 2015年秋季講演会の報告(井田2015年秋季講演会組織委員長)

(玄田会員より)

当初の予定を大幅に超えて、参加者170名以上であったことが報告された.

4.4. 2016年秋季講演会の案内(はしもと2016年秋季講演会組織委員長)

(浦川会員より)

開催日:2016年9月12日-14日

場 所:ノートルダム清心女子大学・カリタスホール(岡山駅より徒歩10分)

4.5. その他

JpGUに関して(倉本会長より)

来年参加料が値上げ予定であること,代議員選挙の投票受付中であること,学術会議関連の報告が行われた.

2014年に提出した大型研究計画の概要が述べられた.

コンソーシアムの構築として、ISAS大学連携拠点形成プログラムに採択された.

火星衛星SR計画に関して(倉本会長より)

コンセプト, 選定の経緯, 目標等が報告された.

8/25 予備 MDR 実施

11/02 国際MDR

- 11/4, 5 MDR
- 年内に SRR

来春にJAXAプロジェクト準備審査

多方面からのサポート,建設的な批判などが必要である.

-CPSでワークショップを企画中

-JpGU小天体セッションで特集を予定

SLIMに続く,公募型小型計画2号機,3号機(イプシロン)が近々に募集予定であるため,提案予定の方は 早めにご連絡いただきたい.

質疑応答

- (小林会員) 火星衛星 SR に関しての planetary protection は考えているか.
- (倉本会長)現状では十分に検討できておらず、今後の課題とする.

(渡邊会員) 現在参加していない方々にもサイエンス面での積極的な議論をお願いしたい.

探査ミッション立案スクールについて(上野会員)

CPSが合宿形式の探査ミッション立案スクールを開催する. 資料が配布された.

- 日 時:2016/01/08-2016/01/12
- 場 所:神戸大学統合研究拠点3F:惑星科学研究センター内
- 対象:大学院生(+ポスドク,若手)
- 5. 議長団解任
- 6. 閉会宣言

◇日本惑星科学会第113回運営委員会議事録

日 時:2015年10月14日(水)17:40-21:00

場 所:東京工業大学 大岡山キャンパス 石川台2号館318号室

運営委員:

倉本 圭, 渡邊 誠一郎, 荒川 政彦, 田近 英一, 中村 昭子, 中本 泰史, 平田 成, 井田 茂, 和田 浩二, 春山 純一, 竹広 真一, 諸田 智克, 橘 省吾, はしもと じょーじ, 小久保 英一郎, 荒井 朋子, 佐々木 晶, 生駒 大洋, 小林 直樹

オブザーバー:

城野 信一(行事部会長)

欠 席:

千秋 博紀, 並木 則行, 林 祥介, 永原 裕子

委任状:

議長:2, 小林 直樹:1

議題・報告事項:

- 1. 入退会について
 - 諸田総務専門委員長より,入退会状況が報告された.
- その他総務からの案件(議長・書記等)
 諸田総務専門委員長より,第44回総会の議長に薮田 ひかる 会員,書記に坂谷 尚哉 会員が推薦された.

3. 遊星人の発行状況報告(和田編集専門委員長)

和田編集専門委員長から発行状況について報告があった.

- つつがなく発行している.
- 前号ページ数が最大級であった.
- 印刷費は問題ないか? (渡邉)
 - 財務に確認する.(和田)

4. 遊星人出版倫理規定について

和田編集専門委員長からオーサーシップと二重投稿禁止に関する規定の提案があった.

- 二重投稿についてどこまで厳密に対応するか?英語論文を日本語で書き直した場合などは?(渡邉) 英語論文を引用する形で解説を付与した場合はよいと判断する.直訳ではだめ.(和田)
- このようなガイドラインを示すことで投稿数が減るのが気がかり(渡邉)
 - 編集部内で内規を設け運用する(和田)

規定はオリジナル論文とそれ以外の記事で適用範囲を分けている.(和田)

できるだけ早く公示・施行する.

5. 2015年秋季講演会報告

井田2015年秋季講演会組織委員長より報告があった.

- 事前登録:166
- 当日参加:30弱
- 190名程度の参加にはなる見込み.
- 席数は140-150でおおよそ埋まっている

試みとしてマイクをなしにしてみた.現状では問題なさそうである.

6. 2016年秋季講演会実施案

はしもと2016年度秋季講演会組織委員長より2016年度秋季講演会の報告があった.

9/12(月) - 14(水)

ノートルダム清心女子大学

懇親会会場も同じ

日程については steering-ml で議論した上で決定した(参考: [steering:28097])

LOCは、はしもと、水野(ノートルダム清心女子大)、浦川、道上(近畿大)の体制.

7. 今後の秋季講演会について

城野行事部会長より今後の秋季講演会の予定について報告があった.

2017年:大阪大学

2018年:今後打診

8. 予稿集公開について

城野行事部会長より今後の予稿集公開について報告があった.

遊星人,秋季講演会予稿集のNiiでの公開サービスが終わる.

NIIへの登録・公開が終わる

jstageへ移行を行う場合はxmlでメタデータを作る必要がある

jstageへ移行申請はするが, xmlを作る労力を考えると移行すべきかどうかは問題

xtmlファイルさえ用意できれば無料で公開できる.(倉本)

無料である(城野)

業者にxtmlファイル作成を依頼する場合の予算は?(小林)

確認する(城野)

一度,関係者が講習会に参加して対応可能か検討することになった.

9. LOCの口座について

城野行事部会長より引き継ぎ口座の開設について相談があった. 引き続き検討する.

10. 惑星サーバの移転について

平田情報化専門委員長より惑星サーバの移転について報告があった. 2016年4月ごろに新サーバに移転する予定.

11. シニア会員制について

橘将来計画専門委員会より終身会員制度について提案があった. 海外では例がある. 引き続き検討する.

12. 運営委員の連続再任制限について

運営委員の連続再任制限はないか?

356

新陳代謝はあったほうがよい

検討を続ける.

13. 会計第13期下期中間報告

竹広財務専門委員長より第13期下期会計中間報告があった.

予算通りにおおよそ進んでいるが、遊星人印刷費高もあり支出が多くなっている.

資料中の前期繰越収支差額は7,427,321ではなく7,599,063の誤り.

14. 自然災害に伴う会費免除措置等について

竹広財務専門委員長より現時点で申請者がいないことが報告された.

15. 会計第13期上期予算案

竹広財務専門委員長より第13期上期予算案があった.

EPS分担金をこれまでの10万から20万計上することとした.

賛助会員の減少など20万減, EPS分担金を10万から20万計上, 遊星人印刷費を多くしたことで~86万の

赤字予算になる. 遊星人のカラーページサービスを休止とする.

総会で会長から学会賞賞金の是非を確認する.

16. 最優秀発表賞受賞者の決定

中村学会賞選考委員長より選考委員会での選考の結果が報告された. これにより

田中 佑希 会員(名古屋大学)

田崎 亮 会員(京都大学)

が受賞候補として推薦され、異議なく承認された.

17. 日本地球惑星科学連合の報告

倉本会長,田近委員より学協会長会議の報告があった.

法人運営規定の小改正

学術会議活動報告

マスタープラン改訂(2017年)のための活動開始

アンケートを実施した(学会では会長と将来計画委員会で対応)

次回の大改訂(マスタープラン 2019)に向けた検討も必要

学協会長会議議長は海洋学会会長となる

AGUとのジョイントセッションを設ける

2017年度はAGUと共催にする

2018年以降もEGUやAOGSとの共催の可能性も検討するなど、国際化を進める

- 参加費を上げ、外税方式にする
- ポスター比率を上げたい(国際展示場も使って面積は増やす)
- 代議員選挙投票、フェロー推薦の依頼があった
- 連合大会の学生発表賞について審査員の負担が大きすぎる.やり方を改善できないか.(中村) 検討する.(佐々木)

18. 大型研究計画について

倉本会長から大型研究計画について報告があった.

コンソーシアム構想の改定をする予定である.その他に提案予定があれば早めに連絡すること. 今回の改定で火星衛星も位置付けるべき.(渡邉)

その予定である.(倉本)

その次の改定はいつになるのか?(春山)

2019年である. (倉本)

19. 将来惑星探査について

倉本会長から火星衛星サンプルリターン計画について報告があった。
 11/2に国際MDR, 11/4, 5に国内MDR.
 12月中にSRR, 1月に準備審査の予定である。

宇宙探査小委員会で概算要求は通った.

イプシロンを使ったミッションの公募がある.

今後, RFIの小改定の見込み.

20. その他

特になし

◇日本惑星科学会賛助会員名簿

2015年12月25日までに, 賛助会員として本学会にご協力下さった団体は以下の通りです. 社名等を掲載し, 敬意と感謝の意を表します. (五十音順)

株式会社五藤光学研究所 有限会社テラパブ 株式会社ニュートンプレス

◇日本惑星科学会主催・共催・協賛・後援の研究会情報

(a)場所,(b)主催者,(c)ウェブページ/連絡先など. 転記ミス,原稿作成後に変更等があるかもしれません.各自でご確認ください.

2016/06

6/26-7/1 Goldschmidt Conference 2016

(a)横浜国際平和会議場(パシフィコ横浜), 神奈川県横浜市
(b)European Association of Geochemistry, Geochemical Society
(c)http://goldschmidt.info/2016/index

2016/08

8/7-8/12 第18回結晶成長国際会議(ICCGE-18)

(a)名古屋国際会議場, 愛知県名古屋市熱田区

(b) The Japanese Association for Crystal Growth, The Japan Society of Applied Physics

(c)http://www.iccge18.jp/index.html

358

編集後記

『遊星人』には専門的な記事が多い、とよく言われ ます.前号(vol.24, no.3)の特集「日本における衝突研 究の軌跡」では、13報の特集論文を含む14報の査読付 き記事が掲載されました.お手元に届いた『遊星人』 の厚さに驚かれた方も多かったのではないでしょうか. 運営委員会でも話題にあがったようです.詳細は JSPS Informationをご覧下さい.

厚いと言えば、東京のコンビニで見かけた某結婚情 報誌の厚さにも驚愕しました. まるで辞書か百科事典 です.「情報が溢れる現社会」を具現化するとああな るのでしょうか. あれだけ結婚に関する情報が溢れて いるのに少子化とは、世の中一体どうなっているので しょう.以前,私の妻が「あまりの重さにめげて、購 入を諦めた」と言っていたのがひとつの答えなのかも 知れません.

小惑星探査機「はやぶさ」の活躍もあり,惑星科学 の魅力が世の中に広まっているのを感じます.一般の 方が『遊星人』を手に取られる機会も増えるかも知れ ません.そのときに、「あまりの難しさにめげて、購 読を諦めた」と言われてしまうと、ちょっと寂しいな ぁと思いました.もう少し気楽に読めるようなコーナ ーがあってもいいのかも知れません.良い企画をお持 ちの方は、ぜひ編集委員にお声掛けを.ちなみに、前 号から始まった連載企画『遊星百景「私のお気に入り の地形」」では、地球では見られない珍しい地形を、 著者の想いも込めて解説してくれています.本号には その第2弾が掲載されていますので、ぜひご覧下さい. (三浦) 編集委員 和田 浩二 [編集長] 三浦 均 [編集幹事] 生駒 大洋, 上椙 真之, 岡崎 隆司, 奥地 拓生, 木村 勇気, 小久保 英一郎, 白石 浩章, 杉山 耕一朗, 関口 朋彦, 田中 秀和, 谷川 享行, 成田 憲保, はしもと じょーじ, 本田 親寿, 諸田 智克, 山本 聡, 渡部 潤一

2015年12月25日発行

日本惑星科学会誌 遊・星・人 第24巻 第4号

定価 一部 1,750円(送料含む)

編集人 和田 浩二(日本惑星科学会編集専門委員会委員長)

印刷所 〒501-0476 岐阜県本巣市海老A&A 日本印刷株式会社

発行所 〒105-0012 東京都港区芝大門2-1-16 芝大門 MF ビル B1 階

株式会社イーサイド登録センター内 日本惑星科学会

e-mail : staff@wakusei.jp

TEL:03-6435-8789/FAX:03-6435-8790

(連絡はできる限り電子メールをお使いいただきますようご協力お願いいたします)

本誌に掲載された寄稿等の著作権は日本惑星科学会が所有しています.

複写される方へ

本誌に掲載された著作物を個人的な使用の目的以外で複写したい方は,著作権者から複写等の 行使の依託を受けている次の団体から許諾を受けて下さい.

〒107-0052 東京都港区赤坂 9-6-41 乃木坂ビル 学術著作権協会

TEL:03-3475-5618/FAX:03-3475-5619

e-mail:kammori@msh.biglobe.ne.jp

著作物の転載・翻訳のような複写以外の許諾は,直接日本惑星科学会へご連絡下さい.