特集「日本における衝突研究の軌跡」 月の縦孔形成〜斜め衝突による実験的研究

道上 達広¹, 長谷川 直², 春山 純一²

2015年5月9日受領, 査読を経て2015年5月30日受理.

(要旨) 月や火星には深さ・直径共に数10 mから100 mにおよぶ縦孔が近年,探査機によって多数観測され るようになった.また縦孔の中には,地下空洞に開いた「天窓」であることが確実なものもある.こうした 縦孔は,科学的に多くの興味があるとともに,将来的に人類が月や火星に進出したとき,長期滞在に適する 基地として有望な場所でもある.月の大きな縦孔については,地下空洞の天井に隕石衝突が引き金となって 形成された可能性が示唆されている.本研究では,月に見られる楕円形の大きな縦孔が,隕石の斜め衝突に よって形成された可能性を,実験的研究によって明らかにした.

1. はじめに

近年,日本の月探査機SELENE(かぐや),米国の 月探査機ルナー・リコネサンス・オービター,火星探 査機マーズ・オデッセイ,マーズ・リコネサンス・オ ービターの画像データから,月や火星には数10 mか ら100 mにおよぶ縦孔が発見されている[1-5].縦孔は, 垂直,もしくは急傾斜の壁を持っており,通常のクレ ーターよりも深さ/直径比が大きい.一般のクレータ ーの深さは直径の0.1-0.2倍程度であるのに対して,縦 孔の深さは,直径の1倍以上のものもある.また,縦 孔の中には,底の様子や,斜め観測により広い地下空 洞に開いたことが確実なものも存在している[2,3]. 地下空洞は温度が一定であると考えられ,宇宙放射線 や小規模の隕石衝突を防ぐことができるため,将来的 に人類が月面に基地を作った際の,長期滞在に非常に 有効な場所である[5,6].

月に地下巨大空洞が存在する可能性は過去の研究で も示唆されていた(例えば[7]). それは溶岩チューブ と呼ばれる空洞で,地球では火山などから噴出した特 に玄武岩質溶岩のような粘性の低い溶岩が,天井を形 成しながら,あるいは地下の脆弱な部分を通って流れ ていくことによって形成される.月の海は玄武岩質が 埋めたものであり,溶岩チューブが形成されたことは 間違いないと考えられている.月は地球よりも重力が 小さいことから自重による崩壊の可能性は地球より低 い.チューブ形成後の相次ぐ隕石衝突で溶岩チューブ のほとんどは崩れてしまった可能性もあるが,中には 崩壊を免れ,地下に巨大空洞を残している可能性も考 えられる.

我が国の月探査機「かぐや」によって最初に発見さ れた縦孔は3つ(図1)で、直径、深さ共に60-100 m に及ぶ[1, 2]. その後、米国の月探査機ルナー・リコ ネサンス・オービター(LRO)によって、さらに小さ い縦孔や、浅い縦孔が多く観測されている[2, 3]. そ の多くは、直径数10 kmオーダーの大きめのクレータ ーの底に存在する[8]. これらはクレーター形成後、 衝突溶融物(インパクトメルト)が流れた際に内部の揮 発性物質が抜けて出来たか、インパクトメルトが冷却 する際の岩体収縮に起因して形成されたと考えられて いる. 大きさ5 m以上のもので200個以上に及んでい る. 一方、海に孤立して見られる縦孔は「かぐや」が 発見したものを含めても10個に満たない[3]. 月の海 の縦孔と同様のものは、火星でも発見されており、直 径が100 m以上に及ぶものも多い[4].

大きな縦孔の形成メカニズムの有力な説として, 隕 石衝突と断層起源による2つが考えられる[9]. 前者は,

^{1.} 近畿大学工学部教育推進センター

^{2.} 国立研究開発法人 宇宙航空研究開発機構 宇宙科学研究所 michikami@hiro, kindai, ac. jp

Mare Tranquillitatis Hole (静かの海の縦孔)

Mare Ingenii Hole (賢者の海の縦孔)

図1: 月探査機「かぐや」で最初に発見された3つの縦孔とそれらの場所. (a) Marius Hills Hole (マリウスヒルズの縦孔) [LRO NAC M122584310LE] (b) Mare Tranquillitatis Hole(静かの海の縦孔) [LRO NAC M126710873RE] (c) Mare Ingenii Hole(賢者の海の縦孔) [LRO NAC M123485893RE] 以上の画像(a)~(c)は、米国の月探査機ルナー・リ コネサンス・オービターによる[2]. (d)「かぐや」で最初に発見された縦孔の場所. 「かぐや」の地形カメラのデータで, 太陽高度40度以上で月の海の95%以上を撮像している. それぞれの緯度, 経度はMarius Hills Hole [303.3° E, 14.2° N], Mare Tranquillitatis Hole [33.2° E, 8.3° N], Mare Ingenii Hole [166.0° E, 35.6° S] である[1,5]. 月の地下空洞の天井に隕石が衝突し、それが引き金と なって崩落し、縦孔が形成された可能性が、地形的特 徴[1]と数値計算[10]によって示されている。後者は、 固い下層に脆弱な上層が存在し、下層のずれによって、 上層が下層の隙間に流入することによって縦孔が形成 される、縦孔の起源が隕石衝突とすると、 クレーター に見られるリムや、周囲に破片が見られると予想され るが、実際には見られない、このことから縦孔は隕石 衝突では形成されないと考えている研究者も多い[2-4]. しかしながら、筆者らが過去に行った地下空洞を模擬 した室内正面衝突実験[11]によれば、(1)天体表面側 に飛び出す破片の量は少なく、むしろ(地下下方に位 置することになる)空洞に向かって飛び出す破片の量 の方が多い。(2)縦孔の淵のリムは形成されにくい。 ということが分かった.実際の月や火星の縦孔の底に は多くの破片が観測されていることもあり、我々の実 験結果と一致する、すなわち、縦孔は隕石衝突によっ ても形成される可能性があることを初めて実験的に明 らかにした[11].

以上のように、縦孔は隕石衝突が引き金となって形 成された可能性はあるものの、発見された60-100 m サイズの3つの月の縦孔は、火星の縦孔に比べて長軸 と短軸の長さの差が明らかな楕円形をしている。クレ ーターにおいて、多くは円形であるが、楕円形のクレ ーターにおいて、多くは円形であるが、楕円形のクレ ーターは隕石の斜め衝突によって形成される。そのた め、月の縦孔も隕石の斜め衝突によって形成された可 能性はある、筆者らが過去に行った実験は、主に火星 の縦孔を模擬して行った正面衝突で、斜め衝突は行っ ていない[11].そこで、月の60-100 mサイズの3つの 楕円形をした縦孔が、隕石の斜め衝突によって形成さ れた可能性を探るために、空洞を模擬した標的に対し て、斜め衝突実験を行った。その実験結果と観測され た縦孔との比較検討をして、縦孔形成メカニズムにつ いての考察を行った。

2. 実験方法

2.1 標的の作製

月面表層の強度は過去の研究によれば1 MPaのオ ーダーである(月の60-100 mサイズのクレーターの場 合)[12]. そこで強度1 MPaのオーダーの人工物体の

図2:作製した標的(モルタル).横35cm,縦25cm,厚さ4cmの厚板で,空洞を模擬するために中心部分横22cmの領域は厚さ1cmに加工した.質量比で砂:セメント:水=10:1:1の割合で作製.

モルタルを標的として作製することにした. 平均粒径 0.2 mmの豊浦標準砂に少量のセメントを加え, 混合 した後, さらに少量の水を少しずつ加え, 均質になる まで攪拌した. 質量比は砂:セメント:水=10:1:1 である.湿ったモルタルを型に押し込み, 1日以上置 いて乾燥させた.その後,型を取り除き,さらに1週 間以上置いて常温で乾燥させた.標的の大きさは縦が 25 cm,横が35 cm,厚さ4 cmの厚板で,空洞を模擬 するために中心部分横22 cmの領域は厚さ1 cmに加 工した(図2).密度は1550 kg/m³であり,空隙率は 40%と計算される.

2.2 標的の強度試験

上記と同じ方法で、強度試験用に高さ3 cm、直径6 cmの円柱形のモルタルを作製した。そのモルタルを、 高さ3 cm, 直径1.5 cmの円柱形のコア状にくり抜き, いくつかのコアサンプルを作製した. 強度試験をする ためには、圧縮面の平行度が重要であるので、高さの 誤差が0.10 mm以内になるようにコアサンプルを成 形した. 一軸圧縮試験を島津製のAutograph-5000 A を使用して、コアサンプルに対して行った. 圧縮は1 分間に1 mmの速度で行い。圧力ゲージをコアサンプ ルにつけて、応力ひずみ曲線を得た. 圧縮強度は10 回測定を行い. 平均が3.2±0.9 MPaであった. また. 直径10 cm高さ8.7 cmの円柱形のモルタルに対して, 圧裂引張強度試験を行い. 引張強度は0.83 MPaであ った. さらに、厚さ2 cm、縦横30 cmの厚板状のモ ルタルに対して音速測定を行い. 値は2280±60 m/s であった.

2.3 **衝突実験の概要**

衝突実験はJAXA宇宙科学研究所の2段式軽ガス銃 を用いて行った[13].標的の周囲をダンボールまたは 発泡スチロールで固定し,チャンバー内に設置した(図 3).弾丸には直径7.14 mmのナイロン球(質量0.217 g)を用い,標的表面に対して衝突角度α(図3)は2^cか ら90^cの範囲で衝突させた(衝突角度は標的面からの角 度で定義).衝突速度は2.4 km/s前後で,全ショット 数は8である.真空度は40 Pa以下で,破片の飛び出 す様子を2方向から高速度カメラで撮影した.実験条 件および実験結果一覧については表1に示す.

3. 実験結果

3.1 衝突角度と縦孔

斜め衝突によって形成された縦孔の写真は図4であ る.衝突角度ごとの縦孔の様子が示してあり,各図の 左側から弾丸は衝突した.今回の実験では,衝突面, すなわち標的表側にクレーターが形成された一方で (図4上段),衝突反対面,すなわち標的裏側にもクレ ーターが形成された(図4下段).本論文では,衝突面 に形成されたクレーター(くぼみ)を表面クレーター, 衝突反対面に形成されたクレーター(くぼみ)を裏面ク レーターと呼ぶことにする.表面クレーターと裏面ク レーターが繋がったとき,縦孔は形成されたと言える. 例外として、衝突角度 $\alpha = 2^{\circ}$ では表面クレーターと裏面クレーターが繋がらず、縦孔は形成されなかった. 図4から、衝突角度 $\alpha = 30^{\circ}$ では $\alpha = 90^{\circ}$ の正面衝突のクレーター、縦孔の形は変わらないものの、 $\alpha = 20^{\circ}$ より小さくなると、衝突角度が小さいほど、表面クレーターと縦孔の形は細長くなり、それは弾丸の衝突方向に平行であることが分かる.

定量的評価を行う目的で、表面クレーター、裏面ク レーター、縦孔のそれぞれの長軸、短軸の大きさをプ ロットしたのが図5である。全体として、裏面クレー ターの方が表面クレーターよりも大きい。表面クレー ター、縦孔のそれぞれの短軸の大きさは衝突角度 α が小さくなるにつれて、小さくなっている。一方、表 面クレーター、縦孔のそれぞれの長軸の大きさは衝突 角度依存性が見られず、ある程度のばらつきがあるも のの、値は大きくは変わらない、これは、衝突角度 αが小さくなるにつれて、短軸の大きさが小さくなり、 その結果、表面クレーター、縦孔の形が細長くなるこ とを示している。

図6は衝突角度 α と楕円率の関係を示したものであ る.ここで,楕円率は,長軸の大きさ/短軸の大きさ で定義した.衝突角度 $\alpha = 20^{\circ}$ から角度が小さくなる ほど,表面クレーター,縦孔の楕円率は大きくなって いることが分かる.一方,裏面クレーターは,衝突角 度が小さくても,極端には細長くならない.例えば, 衝突角度 $\alpha = 2^{\circ}$ では,表面クレーターは極端に細長い 形であるが,裏面クレーターはそうではない.裏面ク

図3:標的と弾丸の衝突角度および標的の設置例.弾丸は左側から標的に衝突.

ショット番号	衝突角度	衝突速度		表面クレー ター			裏面クレー ター		縦孔		
			長軸の 大きさ	短軸の 大きさ	楕円率	長軸の 大きさ	短軸の 大きさ	楕円率	長軸の 大きさ	短軸の 大きさ	楕円率
		[km/s]	[cm]	[cm]		[cm]	[cm]		[cm]	[cm]	
s1711	2	2.33	4.7	1.0	4.7	4.0	3.3	1.2			
s1713	5	2.39	4.5	2.2	2.0	4.3	4.0	1.1	2.8	1.4	2.0
s1306	10	2.35	4.0	2.4	1.7	4.8	3.3	1.5	2.5	1.3	1.9
s1308	10	2.26	3.9	2.0	2.0						
(厚板)											
s1712	15	2.39	3.8	3.0	1.3	4.5	4.1	1.1	2.6	1.8	1.4
s1305	20	2.38	3.7	3.5	1.1	5.3	5.2	1.0	2.6	2.2	1.2
s1309	30	2.38	4.3	4.0	1.1	5.3	5.0	1.1	2.8	2.7	1.0
s806	90	2.62	5.2	4.9	1.1	5.5	5.4	1.0	3.4	3.3	1.0

表1:実験条件と実験結果. 楕円率は長軸の大きさ/短軸の大きさで定義.s1308は標的の厚みが6cm.それ以外の標的は厚みが1cmである.

 $\alpha = 2^{\circ} \alpha = 5^{\circ} \alpha = 10^{\circ} \alpha = 15^{\circ} \alpha = 20^{\circ} \alpha = 30^{\circ} \alpha = 90^{\circ}$ (s1711) (s1713) (s1306) (s1712) (s1305) (s1309) (s806)

2cm

図4: 衝突角度と縦孔(写真). 上段が表面クレーター,下段が裏面クレーターを示す. α=2°では縦孔は形成されなかった. 各図の左側 から弾丸は衝突した.

図5: 衝突角度と表面クレーター,裏面クレーターおよび縦孔の 大きさ.

図6: 衝突角度と楕円率(表面クレーター, 裏面クレーターおよ び縦孔).

図7:標的の厚さが1cmのときの表面クレーターと縦孔(上段: s1306)と標的の厚さが6cmのときの表面クレーター(下段: s1308). 衝突角度は共にα=10°. 各図の左側から弾丸は衝 突した.

レーターの楕円率はどの衝突角度でも1.5以下である.

3.2 標的の形状と縦孔

衝突角度以外にも,縦孔の形状に影響すると考えら れる物理量は存在する.例えば,弾丸の物性,形状, 衝突速度,標的の物性,形状などが挙げられる.その 中でも,地下空洞は様々な形状が存在することが考え られるので,標的の形状は特に重要であろう.そこで, 本研究では次に標的の形状について調べることにした.

前述の実験では、厚みが1 cmの標的において形成 された縦孔であった。弾丸の大きさと標的の厚みの比 によって縦孔の形がどのように変わるかは、筆者らが 過去に行った正面への衝突実験(*a* = 90°)によって示 されている[11]. (1)表面クレーターの大きさは空洞 の大きさに関係なく一定である。(2)裏面クレーター が形成された場合、裏面クレーターの大きさは表面ク レーターよりも大きく、その大きさは標的の厚さが大 きくなるにつれて、大きくなる。(3)縦孔が形成され た場合、標的の厚さが大きいと縦孔の大きさは小さく なる.

今回の斜め衝突実験でも、標的の厚みで表面クレー ターがどのように変わるか調べた.図7は衝突角度 α =10°のときの、表面クレーターで、標的の厚さが1 cmの場合が上段(s1306)に、標的の厚さが6 cmの場 合が下段(s1308)に示してある.厚さ6 cm(s1308)で は裏面クレーター、縦孔は共に形成されなかった、今

Marius Hills Hole (マリウスヒルズの縦孔)	Mare Tranquillitatis Hole (静かの海の縦孔)	Mare Ingenii Hole (賢者の海の縦孔)							
LRO ID:M137929856R	LRO ID:M144395745L	LRO ID:M184810930L							
実験でできた (斜めから見たとる s1305(a=20°)	<縦孔 ^{-ろ)} →	X							
月の縦孔(断面の予想)参考文献[2]のFig.6より引用									
A * ¹	B								
実験でできた 縦孔の断面 s1305(a=20°)	\rightarrow								
図8:月の縦孔と予	想される断面、およ	び実験s1305(α=20°)で							

観測:月の縦孔(斜めから見たところ)参考文献[2]より引用

回, 表面クレーターの大きさと楕円率は, 厚さ1 cm と6 cmで類似していることが分かる.

4. 議論~月の縦孔との比較

形成された縦孔と断面.

室内実験の結果を,実際の天体衝突に直接応用する ことは難しいかもしれないが,今回の実験結果は月の 縦孔に関して新たな解釈を与えることができる.

図8は図1で示した月の縦孔を斜めから撮像した画 像とその予想される断面,および今回の実験例s1305 ($\alpha = 20^{\circ}$)の画像と断面を表している.予想される月 の縦孔の断面はs1305の縦孔の断面と類似した形になっている.また,s1305の縦孔以外でも今回の実験で 形成された縦孔の断面(長軸方向の切断面)は,月の縦 孔の断面と類似している(ただし, $\alpha = 2^{\circ}$ を除く).こ れは,月の縦孔の断面が衝突角度に依存せず類似した 形になることを意味しているのかもしれない. 補足として、月の縦孔の断面には複数の層が観測さ れているが([2]の研究によれば、これらは複数の溶岩 流によって形成されたと考えられている)、今回の実 験で用いたモルタルは、均質に標的を作ったにも関わ らず、類似した複数の層が形成されている、つまり、 複数の溶岩流が流れなくても、衝突によって、複数の 「みかけの層」ができる可能性がある.

次に月の縦孔を真上から見た場合(図1)と,実験の 縦孔の形状(図4)を比較してみる.実験における表面 クレーターと縦孔の平均サイズ比と,月の表面くぼみ (漏斗状になっている縦孔表面の外縁部)と縦孔の平均 サイズ比は類似しているが,ここでは輪郭がはっきり して定量的な比較が容易な,月の縦孔と実験の縦孔の 楕円率を比較することにした.

図1のそれぞれの月の縦孔の楕円率は,(a) Marius Hills Hole(マリウスヒルズの縦孔)で,a/b=1.2,(b) Mare Tranquillitatis Hole(静かの海の縦孔)で,a/b=1.2,(c) Mare Ingenii Hole(賢者の海の縦孔)で,a/b= 1.6である[2].図6より,本実験でその楕円率に対 応する衝突角度は(a)と(b)で $\alpha = 20^{\circ}$ [s1305(a/b=1.2)],(c)で $\alpha = 10^{\circ}$ [s1306(a/b=1.9)]と $\alpha = 15^{\circ}$ [s1712 (a/b=1.4)]の中間である.一般に天体に隕石が衝突 角度 α 以下で衝突する確率は

$$P = \int_{0}^{\alpha} \sin 2\theta d\theta \qquad \dots \qquad (1),$$

で与えられる[14]. (1)式より衝突角度 $\alpha = 20^{\circ}$ 以下で 衝突する確率は約12%,衝突角度 $\alpha = 20^{\circ}$ 以下で衝突 する確率は約7%程度と計算される.実際,そのよう な角度で月表面に隕石が衝突する可能性は十分あると 考えられる.また,月面の縦孔のサイズは60-100 m であることから,重力よりも天体表面の強度が支配的 な強度支配領域で月の縦孔は形成されたであろう.こ の点でも、今回の室内実験の結果から導かれた衝突確 率については、月の縦孔に適用できると言って良い.

5. まとめ

月の縦孔の形成メカニズムを知るために、地下空洞 を模擬したモルタル標的に対して衝突角度 $\alpha = 2^{\circ}-90^{\circ}$, 衝突速度2.4 km/sで衝突実験を行った.その結果,

・今回の実験のモルタル標的では、縦孔はα = 20°以
 下で楕円形になる。

- ・月の縦孔の形状は、その断面、楕円率ともに今回の 斜め衝突実験で再現することができる。
- ・月の縦孔の楕円率は1.2から1.6程度で、今回の実験 結果を適用すると、それらができる衝突角度は、α
 =20°-10°である。実際の天体がこれらの角度で衝突 する可能性は十分にある。

以上のように,斜め衝突実験によって形成される縦 孔は,月の縦孔の形状ととても類似しており,それら が隕石の斜め衝突によって形成された可能性があるこ とを示すことができた.

謝 辞

本実験はJAXA宇宙科学研究所のスペースプラズ マ共同利用(超高速衝突実験)で行いました.改めて御 礼申し上げます.標的の一軸圧縮試験は、JAXA宇宙 科学研究所の白石浩章氏のもとで,標的の圧裂引張強 度試験,音速測定は,福島工業高等専門学校の山ノ内 正司氏のもとで行うことができました.心より感謝申 し上げます.また,北海道大学低温科学研究所で,毎 年開催される「天体の衝突物理の解明」シンポジウム では,多くの研究者と貴重な議論をすることができ, お世話になりました.さらに,本稿の査読者には丁寧 な査読をして頂き,感謝いたします.本研究は,公益 財団法人福島県学術教育振興財団の助成を受けました. ありがとうございました.

参考文献

- [1] Haruyama, J. et al., 2009, GRL 36, L21206.
- [2] Robinson, M.S. et al., 2012, Planet Space Sci. 69, 18.
- [3] Wagner, R.V. and Robinson, M.S., 2014, Icarus 237, 52.
- [4] Cushing, G. E., 2012, J. Cave Karst Stud. 74, 33.
- [5] Haruyama, J. et al., 2012, In: Badescu, V. (Eds.), Moon
 Prospective Energy and Material Resources, Springer, pp. 139.
- [6] Hörz, F., 1985, In: Mendell, W. W. (Eds.) Lunar Bases and Space Activities of the 21st Century, 405.
- [7] Oberbeck, V. R et al., 1969, Mod.Geol. 1, 75.
- [8] Ashley, J.W. et al., 2012, JGR 117, DOI:10.1029/2011JE003990.

- [9] Wyrick, D., et al., 2004, JGR 109, E06005.
- [10] Martellato, E., et al., 2013, Planet Space Sci. 86, 33.
- [11] Michikami, T., et al., 2014, Planet Space Sci. 96, 71.
- [12] Melosh, H. J., 1989, Impact Cratering: A Geologic Process. Oxford University Press. New York.
- [13] 長谷川直, 2015, 遊星人 24(本号).
- [14] Shoemaker, E. M., 1962, Physics and astronomy of the Moon. Academic Press, New York, 283.