^{特集「日本における衝突研究の軌跡」} 室内衝突実験結果の惑星科学への応用: 破壊・貫入・蒸発

門野 敏彦¹

2015年5月19日受領, 査読を経て2015年6月28日受理.

(要旨)近年,室内衝突実験の結果が「Deep Impact」や「はやぶさ」などの惑星探査によって得られた情報と 直接比較・議論されるようになり(e.g., [1-8]),また,地質学的な証拠との比較も可能になってきた(e.g., [9]).「はやぶさ2」では小型衝突体(SCI)による天体での衝突実験も行われる予定であり[10],惑星科学にお ける室内衝突実験の役割の重要性が一層増している.そこで,特に小惑星や彗星などの小天体での衝突現象 にとって重要な「破壊」(1章)と低密度物質への「貫入」(2章),さらに,高速衝突による「蒸発」(3章)につ いて,室内衝突実験の現状を簡単に紹介する.クレーター形成や粉粒体ターゲット,高空隙率ターゲットの 破壊についてはここでは扱わない.

1.破壊

70年代から微惑星・小惑星の衝突進化を調べる目 的で有限サイズターゲットの破壊実験が行われるよう になった(e.g., [11]).破壊実験で主に調べられてきた のは、衝突条件(衝突速度・角度、弾丸・ターゲット のサイズ、質量、密度、材質、など)に対して、最大 破片のサイズ、破片のサイズ分布、破片速度・回転分 布,破片形状、などである.

この章では、破片のサイズ分布、速度・回転分布、 破片形状について紹介する.ここではターゲットの空 隙率が小さい(数%以下)場合を取り上げる.

1.1 サイズ分布

脆性物質を破壊すると、ターゲットサイズに比べて 十分小さい破片の分布が「べき分布」(power-law)に なり大きい破片の分布は実験条件に大きく依存するこ とは50年以上前から知られており、小惑星のFlora族 [12]や「はやぶさ」の結果(Itokawa表面の岩塊[5]や回 収試料[8])との比較がなされている。サイズ分布全体 は様々な式で表されてきたが、ここでは小さい破片サ

1. 産業医科大学 kadono@med. uoeh-u. ac. jp イズxの分布を「べき分布」: $x^{\alpha}(\alpha \text{ は定数})$,大きい破 片の分布を $\exp[-x/x_0](x_0$ は定数)として分布の特徴 を $\alpha \ge x_0$ で表すことにする.

衝突後, 衝突点付近や衝突点の反対側の(アンチポ ーダル:AP)点で発生し, ターゲット全体に及ぶよう なクラック(以下ではこれをメインクラックと呼ぶ)の 間隔が最大破片や特徴的サイズx0を決める.メインク ラックの間隔は衝突条件(発生する衝撃波やAP点で 発生する希薄波の強さ, 弾丸/ターゲットサイズ, 物 質強度, など)に依存する.破壊の程度(エネルギー密 度[13]や水谷パラメーター[14]が惑星業界では破壊の 程度を表す代表的なパラメーターである)が大きくな ると,メインクラックの本数が増え(間隔が狭くなる) 最大破片またはx0は小さくなる.

衝突点で発生したメインクラックは、加速され、あ る速さに達すると分岐する.分岐後、クラックが進展 するにつれて再びその先端の応力が高くなり速さが十 分大きくなれば更に分岐する.応力がターゲット強度 と同程度になるまで分岐が続く.

分岐を繰り返したクラックは図1のような樹枝状に なり,自由表面に達した場合,クラックに囲まれる部 分(破片のサイズ)は分岐点から自由表面までの長さ程 度となる.破壊時に発生する樹枝状クラックはフラク

図1:樹枝状クラックのイメージ.

タルになることが知られており、それに「囲まれる部 分(破片)」のサイズ分布も「べき分布」に従う(e.g., [15]).

破片の生成は、衝突による衝撃波がターゲット全体 を通過する時刻よりもかなり後まで続いていることが 高速カメラによる観測により示されている[16]. クラ ックは他の樹枝状クラックとも合流し複雑に絡み合う こともある(たとえば衝突点から伸びた樹枝状クラッ クとAP点から発生した樹枝状クラック).

また、クラックは最初の衝撃波・希薄波だけでなく、 その後、ターゲットの自由表面などの境界で反射・生 成されたストレス波によっても生成される.つまり、 初期のクラックも樹枝状のままでなく、時間とともに 更に破壊が進むこともある.このような場合には、ク ラックは網目状になる(例えば図2).

結局、脆性物質の破壊において樹枝状クラックや網 目状クラックのパターンがフラクタル構造を取ること が.破片サイズ分布が「べき分布」に従うことに直結 している.一般に、樹枝状と網目状クラックのフラク タル次元は異なり、その結果、「べき分布」の傾き α も異なる。ガラス板の側面から飛翔体を衝突させたと きの破壊では、最初、樹枝状クラックが主であるが、 その後、網目状クラックが主流になり、αは時間と 共に大きくなる[e.g., 文献16のFigs. 2, 3]. また, ガラ ス板の上下面をサンドイッチして両側から圧力をかけ たときの破壊では、圧力が小さい時には樹枝状クラッ クが何カ所かから発生・進展するだけだが、圧力が大 きくなるとお互いに絡み合い網目状のクラックになっ てサイズ分布のαは大きくなる[e.g., 文献17のFig. 1al. これに対して、石膏板の側面に弾丸を衝突させ たときの破壊では, αはガラス板の側面衝突の場合 に比べて小さい[e.g., 文献17のFig. 1b]. これは、はじ め樹枝状クラックが進展するが、その後はストレス波

図2:網目状クラックのイメージ.

の減衰がガラスに比べて大きいため、ガラスと違って 網目状には発達しないからであると思われる.しかし ながら、石膏板のサンドイッチ破壊ではガラス板と同 様に樹枝状クラックが絡み合い、αは側面衝突破壊 に比べて大きくなっている[17].球や立方体などのタ ーゲットでも衝突の激しさによってαは大きくなる という報告もある(e.g., [12, 14]).また、クラックが枝 分かれしないような物質(金属・液体・空隙率が高く 強度が弱い物質・棒状/線状の1次元的な物質、など) の破壊ではサイズ分布は「べき分布」にはならず、金 属リング[18]、金属平板[19]、棒[20]、液体[21, 22]で は指数関数型に近い分布が得られている.

1.2 速度·回転分布

衝突破壊後に破片が再集積できるかどうかという視 点などから室内衝突実験で高速カメラを使って破片速 度が計測されてきた[e.g., 11, 23, 24とそこで引用され ている文献]. しかしながら, 球や立方体を使った測 定ではカメラの視線方向に多くの破片が重なってしま い破片全体の分布を求めることが難しい、そこで平板 を使うことでほぼ全ての破片速度を計測した[25]. 衝 突点付近や AP 点などでは衝撃波や希薄波の効果を直 接受けるため、放出速度は衝突条件に依存する. これ に対し、ほとんどの領域はストレス波が何度も行き来 して破壊が進行し、最終的に破壊が終了するのはその 領域が持つエネルギーが弾性エネルギー程度になると きである(もしこれ以上のエネルギーを持っていれば 破壊して解消する;この程度になるまで破壊は続く). ヤング率を E,破壊終了時のある破片の歪み ε,質量 m, 密度 p とすれば、この破片がもっている弾性エ ネルギーは $E(m/\rho)\epsilon^2$ である.この弾性エネルギーを 使って破片は外側から順番に離れていく.破片の速度 がVならば運動エネルギーはmV²なので、弾性エネ

ルギーと等しいと置けば $V \sim \sqrt{(E/\rho)} \varepsilon \sim C\varepsilon$ (Cは音速). Cと ε は通常秒速数km ε ~1%なので, Vは破片サイズや衝突条件に依らず秒速~数+mとなる. 実際,衝突速度が秒速数kmから数+mまでの広い範囲で,衝突点やAP点付近からの破片,コアなどを除いて.ほとんどの破片の速度はこの程度になっている.

1.3 形状分布

破片の形状については、文献[28]以来いろいろな実 験条件で得られた破片が分析されてきたが、ほとんど が同じ結果、すなわち、破片の三軸の長さを最大*a*、 最小*c*、それらに垂直な軸に沿った長さ*b*とすると、 (*b*/*a*, *c*/*a*)の分布は平均がそれぞれ~0.7、~0.5になり、 *c*/*a*<~0.2-0.3を持つ破片がほとんどない、という報 告がなされている[11].近年、衝突の証拠として「は やぶさ」探査においてもItokawa表面上の岩塊[6]や回 収試料[7]、さらにfast rotators [6]などの形状と室内 実験の結果が比較されている.

ある領域で破片ができるとき、そのサイズ(たとえ ば分岐したクラックの間隔)の平均値L [m]はその領 域周辺でのストレス条件によって決まるはずであるが、 個々の値は必ずしも厳密にLに等しいわけでなくLの まわりに分布するだろう.これは、クラックの進展や 分岐が確率的な性質を持っているためであり、この性 質はターゲット物質中に内在してクラックの進展・分 岐に関与する「ひび」が活性化する場所が確率的に分 布していることに起因していると考えられる.活性化 する「ひび」の空間的な出現確率が一様で等方的であ るならば,破片の一辺の長さはLのまわりに等確率で 分布するはずである.

そこで、ある破片の3辺*a*, *b*, *c*がそれぞれ独立に*L*のまわりに最大値*H*と最小値*h*(ただし、(*H*+*h*)/2= *L*, *h*/*H*=*k*, ここで*k*は定数)の範囲に一定の確率でラ ンダムに分布する場合を考えてみると、このとき破片 が $\xi \equiv b/a$, $\zeta \equiv c/a$ を持つ確率 $P(\xi, \zeta)$ は*k*から1の 領域内で*ξ*と*ζ*に依らず一定となる¹. *ξ*と*ζ*の平 均値〈*ξ*〉と〈*ζ*〉は², それぞれ*k*=0.2の場合〈*ξ*〉~0.73 と〈*ζ*〉~0.47, *k*=0.3の場合〈*ξ*〉~0.77と〈*ζ*〉~0.53, となり実験とほぼ一致する. 室内実験による形状分布 の結果は、ある圧力条件で活性化する「ひび」の空間 分布は一様であることと整合的である.

また,室内実験の結果やItokawa岩塊の形状・構造 がサイズに依らない[4,6,29]ことは,活性化された「ひ び」の空間分布には内在的なスケールが含まれていな いことを示唆している.

形状分布の下限値kはターゲットの物性を反映して いると考えられる(直感的にはガラスの破片には岩石 では見られないような細長い破片も多い). 今後, 物 性とkの関係を理解して, ターゲット物質によってk にどのような違いがあらわれるのかを定量的に知るこ とができれば, *ξ*と*ζ*の分布からターゲットの物性 に関する情報を得ることができるかもしれない.

2.貫入

相対的に高密度の弾丸が低密度ターゲットに衝突す ると弾丸はターゲット中に深くもぐり込み(貫入し て)通常のクレーターとは異なる形状の痕跡がターゲ ットに残されることがある.これを以下では 「penetration tracks(貫入孔)」と呼ぶことにする.衝 突貫入実験は大きく分けて二つの流れがあった(e.g., [30]に引用されている文献).一つは60年代後半から 始まったクレーター形成実験の延長として,金属弾丸 などを用いて密度比を大きくした条件で行われた実験,

1. 規格化条件は
$$\begin{split} P(\xi,\zeta) \int_{k}^{1} d\zeta \int_{\zeta}^{1} d\xi &= 1 \\ 2. <\xi >= \int_{k}^{1} d\zeta \int_{\zeta}^{1} \xi P(\xi,\zeta) d\xi &= \frac{k+2}{3} \\ <\zeta >= \int_{k}^{1} d\zeta \int_{\zeta}^{1} \zeta P(\xi,\zeta) d\xi &= \frac{2k+1}{3} \end{split}$$

図3:低密度物質への貫入深さ.弾丸が衝突時に受けるダメージ によって貫入孔の形状が異なる[33].同じ弾丸とターゲッ トの組み合わせの場合,横軸は衝突速度と考えてよい.

もう一つは、80年代末から行われている惑星間塵を 出来る限り無傷に捕獲するための探査機搭載用塵捕獲 器の開発と較正実験であり、シートを何枚も重ねたタ ーゲット、発泡物質、エアロジェルなど、全体として 低密度と見なせるターゲットを用いた実験である。10 数年前から一部の小惑星や彗星が非常に低密度である ことが探査などから明らかになり、この種類の実験の 重要度が更に増している。

弾丸の密度が大きい場合でもターゲットの密度が小 さい場合でも、どちらにも共通する貫入孔の大きな特 徴の一つは、孔の入口(衝突点)の径は小さく、深さと 共に増加し、ピークになった後、減少する(つまりク レーターと違って最大径の位置がターゲット表面にな い).また、同じ弾丸とターゲットの組み合わせの場合、 図3のように、衝突速度が大きくなると穴の深さは増 加していく(領域1)が、ある衝突速度でピークになり、 それより大きな衝突速度では減少し(領域2)、更に衝 突速度が大きくなると、ふたたび増加する(領域3).

いくつかのモデルが提案されているが,領域1では 貫入弾丸は衝突時に破壊されず無傷のまま,衝突直後 はターゲット密度の1乗,貫入速度の2乗,弾丸直径 の2乗に比例するような抵抗を受けているとすれば実 験での減速過程と合う.貫入速度が遅くなるとターゲ ットの強度に比例する一定の抵抗を受け最終的に停止 する(e.g.,[31,32]).弾丸の衝突速度が大きくなると衝 突時に弾丸が破壊される.弾丸の最大破片は領域1と 同様の抵抗を受けて減速し貫入孔の深さはこの最大破 片が停止した位置となる.衝突速度が大きくなると弾 丸の最大破片は小さくなり領域2では貫入孔の深さは 衝突速度と共に減少する[31].最大破片が更に小さく なると,最大破片は単独で貫入できず,他の多くの破

図4: 衝突による圧縮・解放と試料にレーザーを直接照射して発 生したプラズマの膨張。

片と共通の衝撃波(バウショック)を形成し貫入する. 破片の集団は貫入と共に弾丸の進入方向と垂直にも広 がり、衝撃波の形状は領域2に比べて半球状に近くな る.つまり、領域3での貫入孔形成過程は通常のクレ ーター形成に近づき、最終形状も貫入孔から通常のク レーターになる。衝突速度が上がれば貫入孔の深さ、 すなわちクレーターの深さは増大する。つまり、領域 1から3は弾丸がターゲット表面に衝突した時の状態 (無傷=1,最大破片=2,球対称衝撃波=3)によって ターゲットの破壊過程が異なる[33].

発泡スチロールに対しては領域1と2での貫入孔の 最大径は密度比に依存せず, 弾丸直径に比例し衝突速 度とともに増加(ほぼ比例)する. エアロジェルに対す る高速カメラによる貫入孔の形成過程の時間分解観測 により、形成中の貫入孔の最大径の位置は衝突点から 直線的に(弾丸の進行方向に対してほぼ一定の角度 で)移動していくことが観測されている[30]. 弾丸が 衝突した時に発生した衝撃波の強さは弾丸の進入方向 からの角度 θ に対して依存性(圧力分布) $b_0(\theta)$ を持 っていると考えられるので(たとえば $p_0(0) \sim \rho_t V_0^2$) 他方、 $p_0(\pi/2) \sim 0$)、衝突点での初期圧力分布 $p_0(\theta)$ $\varepsilon \sim \rho_t V_0^2 (\cos \theta)^n (n \iota 衝撃波の集中度を表す定数) と$ しよう. ある θ 方向の衝撃波は初期圧力 $p_0(\theta)$ から, ターゲット物質を破壊しながら進み、減衰する、圧力 がターゲット強度 Y程度になるまで破壊が起こるの で、減衰率をαとすると破壊される距離rはY~ $\rho_{t}V_{0}^{2}(\cos\theta)^{n}(r/Dp)^{-a} \downarrow b r \sim Dp(\rho_{t}V_{0}^{2}(\cos\theta)^{n}/Y)^{1/a}$ $\sim Dp(V_0/C)^{2/a}(\cos\theta)^{n/a}$,ここでターゲット物質の 音速*C*を使って $Y \sim \rho_t C^2$ とした. rは密度比に依らず、 Dpに比例, V₀の増加関数である.

クレーターと貫入孔形成過程の関連を更に議論する

ためには空隙率の高い石膏のようなエアロジェルと岩 石の中間的な物質を使って弾丸の貫入過程や最大径の 形成過程を調べ[34],衝撃波減衰率αの圧力依存性や nの衝突条件や物質依存性などをより詳細に考慮する 必要がある.

また,弾丸通過後の温度が高いと,その後,貫入孔 壁面の溶融・蒸発が起こり貫入孔の径が広がることも 起こりえる.エアロジェルの衝突でも衝突点付近では 可視の自発光が観測されており数千度になっていてタ ーゲットの溶融・貫入孔の拡大も起こっているかもし れない.探査機搭載の塵捕獲器においても温度は塵へ の影響(変成)という意味で重要であるので,今後はタ ーゲット中の温度分布の時間変化なども調べる必要が あるだろう.

3. 蒸発

80年代には衝突による蒸発現象が惑星集積後期か ら末期の惑星・衛星において重要な役割を果たしたと いう説が多く出てきた(e.g., 大気の起源, ジャイアン トインパクト, 大気のはぎ取り, 蒸気による固体破片 の加速(SNC隕石), コンドリュール, 月の石の残留 磁気, など). 1990年頃から, 衝突蒸発に関する実験 的研究が盛んに行われるようになった. 実験方法とし て現在までに主に三つの流れがある:1. 二段式軽ガ ス銃による衝突蒸発実験, 2. パルスレーザーを試料 に直接照射して蒸発させる実験, 3. パルスレーザー により加速された飛翔体を用いる衝突蒸発実験. それ ぞれの長所と短所を以下で簡単に紹介する.

3.1 二段式軽ガス銃による衝突蒸発実験

60年代に始まったクレーター形成実験以来,惑星 科学で主に使われてきた二段式軽ガス銃は,飛翔体の 速度が秒速10 km以下であり,このような衝突速度で は蒸発しないとされている珪酸塩岩の衝突蒸発実験は ほとんど行われていない.また,加速のための火薬燃 焼ガスが発生した気体や試料を汚染してしまうため, Ahrensのグループによって行われてきた蛇紋岩や炭 酸塩岩のような比較的低衝突速度で脱ガスする試料を 使った実験(e.g.,[35,36])では,試料を堅牢なカプセル 中に設置し,その閉鎖された環境の外側から衝撃波を 伝播させて高圧状態にしてその後回収・分析を行って いた.

90年代に入り, 秒速数kmでも十分に蒸発するプラ スチックや炭酸塩岩などを用いて開放系での衝突蒸発 現象が日本やアメリカのグループを中心として実験的 に調べられるようになった[37-39とそこで引用されて いる文献]. そこでは, 高時間分解能の高速カメラや 分光器による撮像・分光計測によって燃焼ガスの影響 を受ける前の蒸気雲を観測しており, 衝突により発生 したガス雲の膨張速度, 形状, 組成, 温度など, 衝突 蒸発現象における基本的な物理・化学量が調べられて いる.

3.2 レーザー直接照射による岩石蒸発実験

市販されているある程度高出力のレーザー光をレン ズなどにより集光すれば比較的容易に珪酸塩岩蒸気を 発生させることが出来る.80年代末から珪酸塩岩試 料にレーザーを直接照射し発生した珪酸塩岩蒸気の組 成などが調べられている(e.g., [40]とそこで引用され ている文献).

問題は、発生した珪酸塩蒸気がどのような衝突条件 に対応しているのかという点である.一般に、衝突で は物質は衝撃波により圧縮されHugoniot状態方程式 上の状態になる(図4の●). 衝撃波通過によるエント ロピー増加が大きければ希薄波によって高圧状態から 解放され断熱的に膨張した後,気体となる.低強度の レーザーを試料に照射する場合は単に試料をレーザー で暖めて蒸発させる状況である. ある程度強度が高く なると、レーザーの前半部分によって試料表面が(波 長程度の厚さ)蒸発し、出てきた蒸気(プラズマ)中の 自由電子の密度がある一定以上であると、その電子が レーザーの後半部分を吸収(逆制動輻射)してプラズマ は高温高圧になる(図4の○)(レーザーが超高出力の とき、 プラズマの圧力によって試料中に衝撃波が発生 し、それによって試料が圧縮され蒸発する場合もある が. ここではそのような場合は考えない;この衝撃波 を利用して試料の高圧状態を測定する実験も行われて いる(後述)). 膨張するプラズマの熱力学的状態(たと えば図4の♥)を知ることが出来れば、(断熱膨張を仮 定すれば)同じエントロピーを持つHugoniot状態方程 式(EOS)上の点(●)を決めることが出来る. Hugoniot EOS上の点は衝突速度と一対一対応するので、レー ザー照射で得られた珪酸塩蒸気がどのような衝突条件

に対応しているのかを推定できる. 玄武岩をエネルギ ー~100 mJ, パルス幅~10 nsのパルスレーザーで蒸 発させた場合には, 秒速100 kmを越える衝突速度に 対応していた[41]. このようにレーザーエネルギーま たは強度に対応する衝突条件はプラズマによる吸収が 起こるかどうかによって大きく異なる. プラズマへの 吸収はレーザー強度だけでなく, パルス幅や波形, 波 長, 試料にも依存するが, 市販のレーザーはパルス幅 や波形・波長が容易に変えられず, 望む衝突条件での 珪酸塩蒸気を得ることは難しい場合が多い.

3.3 レーザー銃

レーザーを用いて平板飛翔体を加速する研究は70 年代から慣性核融合の分野で行われてきた.レーザー を飛翔体に接着した燃料(アブレーター)または飛翔体 に直接照射し,高温・高圧プラズマを発生させ,それ が膨張する際の反作用で飛翔体を加速する.以下では この方法による飛翔体の加速装置をレーザー銃と呼ぶ. レーザー光は真空チャンバー内にレンズや窓を通して 入射する.加速された飛翔体は同じチャンバー内のタ ーゲットに直接衝突させることが出来る.つまり衝突 実験は開放系で行うことが出来る.また,アブレータ ーや飛翔体の材質を調整することで発生した気体を汚 染することなく測定することも可能となる.さらに, レーザーのエネルギーを十分大きくすれば秒速10 km 以上への加速できるため珪酸塩岩の衝突蒸発実験が可 能である.

(1) 小型レーザー銃による衝突蒸発実験

市販されているエネルギー最大~50 JのNd: YAG - ガラスレーザーを使って金属平板飛翔体を秒速10 kmまで加速できるレーザー銃が開発されている.二 段式軽ガス銃での衝突脱ガス実験に対応する実験が開 放系で可能となり、炭酸塩岩や氷などを使った実験が 行われている(e.g., [42-46]).閉鎖系、カプセルの破壊 を防ぐため低速度、衝撃波の繰り返し反射、などの複 雑で限定的な条件でおこなわれてきた従来の脱ガス実 験に比べて天然に近い状況での実験が可能となった.

(2) 大型レーザー銃による衝突実験

核融合用超高出力レーザー(GXII)を使って. 直径 100 µmのアルミニウム弾丸飛翔体が秒速60 km, タ ンタル平板(直径800 µm, 厚さ50 µm)飛翔体が秒速 30 kmまで加速されている[47, 48]. これらの飛翔体を 使って秒速10 km以上での衝突実験が行われ,クレー ター形成,放出破片[49],衝撃圧縮状態の状態方程式・ 開放過程の熱力学状態[50],最終生成物の組成[9],な どが調べられている.

弾丸飛翔体の場合,超高出力レーザーによる実験で はレーザーエネルギーから飛翔体の運動エネルギーへ の変換効率は0.1%以下であり,平板飛翔体の場合に 比べて1桁程小さい(平板の方が加速プラズマの膨張 が1次元的であるため効率が良い).平板飛翔体の場合, ~50 Jのレーザーでも薄い飛翔体を使って秒速10 km に迫る加速が実現できているが,弾丸飛翔体の場合, 現在の方法ではサイズを小さくすると集光ビーム径の 限界や集光精度,弾丸曲率などによってさらに変換効 率は悪くなると予想される.したがって,飛翔体サイ ズを小さくしたとしてもエネルギーの低い市販のレー ザーで弾丸飛翔体を秒速10 kmを越える速度に加速 することは現状では難しそうである.

現状のレーザー銃の問題の一つは、平板でも弾丸で も飛翔体が加速時に破壊され長距離飛行させるとばら ばらになることがあるため弾丸の初期位置とターゲッ トまでの距離を数mm程度以下に接近させなければな らない点である(~1 mm以下では原形が保たれてい ることは確認されている[47, 48]). 衝撃圧縮状態や開 放過程の熱力学状態の測定など,精度の良い一様な高 圧力状態が必要となる場合には、飛翔体を使わずに高 出力レーザーを試料に直接貼り付けた燃料に照射して 試料中に衝撃波を通過させ、その衝撃波で圧縮された 試料の状態を測定するという方法も採られている (e.g., [51, 52]). ただし、きれいな衝撃波を発生させる ためには強度が大きいだけでなく、レーザーの時間・ 空間波形が成型されていなければならず市販のレーザ ーでは難しい.

現在,日本は世界有数の二段式軽ガス銃保有国であ る.各施設ではそれぞれ特徴をもった実験条件やその 条件に適合した観測機器を有しており,対応できる研 究テーマは多種多様である.加速技術はほぼ完成して おり定常運転が可能である.他方,大型の超高出力レ ーザーは特殊な装置であるためマシンタイムが少ない ことも問題点の一つとなる.したがって,衝突実験に おいてレーザー銃は二段式軽ガス銃に取って代わる存 在というよりも相補的な役割を担っており,今後はそ れぞれの特長を活かした使い方が必要となる.

4. おわりに

今後,探査や観測が進むと,ますます太陽系での衝 突過程を室内衝突実験との比較をとおして議論する機 会が増え,これまで実験室では想定していなかったよ うなパラメーターでの衝突現象も扱う必要が出てくる だろう.またDeep Impact探査や,はやぶさ2での SCI衝突のようにこれまで実験室では難しかった条件 での実験も行われはじめており,従来のスケーリング 則の検証や改良が出来るようになる.探査の結果も含 め実験をとおして物理・化学的に未解明の部分が多い 衝突現象そのものへの理解を深めることが,実際に太 陽系の歴史の中で起こった衝突の役割のより精密な解 明につながると期待される.

謝 辞

機会を与えていただいた長谷川直氏,また,内容(特 に破壊の章)について議論していただいた谷川享行氏 と水谷仁氏,さらに,有益なコメントをいただいた査 読者の荒川政彦氏,に感謝します.

参考文献

- [1] Sugita, S. et al., 2005, Science 310, 274.
- [2] Fujiwara, A. et al., 2006, Science 312, 1330.
- [3] Kadono, T. et al., 2007, ApJL 661, L89.
- [4] Nakamura, A.M. et al., 2008, EPS 60, 7.
- [5] Michikami, T. et al., 2008, EPS 60, 13.
- [6] Michikami, T. et al., 2010, Icarus 207, 277.
- [7] Tsuchiyama, A. et al., 2011, Science 333, 1125.
- [8] Nakamura, E. et al., 2012, Proc. Nat. Acad. Sci. 109, E624.
- [9] Ohno, S. et al., 2014, Nature Geosci. 7, 279.
- [10] 荒川 政彦, 他, 2013, 遊星人 22, 152.
- [11] Fujiwara, A. et al., 1989, in Asteroids II (Univ. of Arizona Press, Tucson), 240.
- [12] Takagi, Y. et al., 1984, Icarus 59, 462.
- [13] Fujiwara, A. et al., 1977, Icarus 31, 277.
- [14] Mizutani, H. et al., 1990, Icarus 87, 307.
- [15] Astrom, J.A., 2006, Adv. Phys. 55, 247.
- [16] Kadono, T. & Arakawa, M., 2002, Phys. Rev. E 65,

035107.

- [17] Kadono, T., 1997, Phys. Rev. Lett. 78, 1444.
- [18] Mott, N. F., 1945, Proc. R. Soc. London A 189, 300.
- [19] Grady, D. E. and Kipp, M. E., 1985, J. Appl. Phys. 58, 1210.
- [20] Kadono, T., 1997, Jpn. J. Appl. Phys. 36, L1221.
- [21] Kadono, T. and Arakawa, M., 2005, Icarus 273, 295.
- [22] Kadono, T. et al., 2008, Icarus 197, 621.
- [23] Nakamura, A. and Fujiwara, A., 1991, Icarus 92, 132.
- [24] Arakawa, M. et al., 1995, Icarus 118, 341.
- [25] Kadono, T. et al., 2005, Phys. Rev. E 72, 045106.
- [26] Fujiwara, A. and Tsukamoto, A., 1981, Icarus 48, 329.
- [27] Kadono, T. et al., 2009, Icarus 200 694.
- [28] Fujiwara, A. et al., 1978, Nature 272, 602.
- [29] Capaccioni, F. et al., 1986, Icarus 66, 487.
- [30] Kadono, T. et al., 2012, Icarus 221 587.
- [31] Kadono, T., 1999, PSS 47, 305.
- [32] Niimi, R. et al., 2011, Icarus 211, 986.
- [33] Kadono, T. and Fujiwara, A., 2005, Int. J. Impact Eng. 31, 1309.
- [34] Yasui, M. et al., 2012, Icarus 221, 646.
- [35] Lange, M. A. and Ahrens, T. J., 1982, Proc. 13-th LPSC, JGR 87, A451.
- [36] Lange, M. A. and Ahrens, T. J., 1986, EPSL 77, 409.
- [37] Kadono, T. et al., 1993, GRL 20 1595.
- [38] Kadono, T. and Fujiwara, A., 1996, JGR 101, 26097.
- [39] Sugita, S. et al., 1998, JGR 103, 19,427.
- [40] Ohno, S. et al., 2004, EPSL 218, 347.
- [41] Kadono, T. et al., 2002, GRL 29, 1979.
- [42] Ohno, S. et al., 2008, GRL 35, L13202.
- [43] Kawaragi, K. et al., 2009, EPSL 282, 56.
- [44] Fukuzaki, S. et al., 2010, Icarus 209, 715.
- [45] Sekine, Y. et al., 2011, Nature Geosci. 4, 359.
- [46] Sekine, Y. et al., 2014, Icarus 243, 39.
- [47] Kadono, T. et al., 2010, JGR 115, E04003.
- [48] Kadono, T. et al., 2012, in the Proc 17th SCCM (AIP Conference Proc. 1426), 847.
- [49] Takasawa, S. et al., 2011, ApJL 733, L39.
- [50] Kurosawa, K. et al., 2010, GRL 37, L23203.
- [51] Sano, T. et al., 2011, Phys. Rev. B, 83, 054117.
- [52] Kurosawa, K. et al., 2012, JGR 117, E04007.