始原天体有機物研究の今とこれから Ⅲ. 有機ナノグロビュール

中村 圭子

2013年12月31日受領, 2014年2月17日受理.

(要旨) 隕石中の不溶性有機物の一部である有機ナノグロビュールは, 星間分子雲あるいは原始太陽系円盤 外縁部の極低温環境に起源をもつ極めて始原的な有機物で,これまで数多くの始原惑星物質中で存在が確認 されている.太陽系形成以前からの情報を記録している有機ナノグロビュールがこれほど多くの始原惑星物 質中で認められるということは,これらが太陽系形成初期においていたるところに存在し,惑星系形成にお いて重要な役割を果たしたことに他ならない.有機ナノグロビュールの形状や有機化学・同位体組成,存在 量の違いをサンプル毎に比較することにより,母天体自身の物質進化・変性過程の解明にも役立つと期待さ れる.本稿では有機ナノグロビュールの特徴・起源とこれまでの研究結果を時系列にそってレビューする.

1. はじめに

有機ナノグロビュールとは、多くの始原的太陽系物 質中に認められる不溶性有機物からなるナノサイズ球 体(ナノグロビュール)で、多くの場合、中心部分が空 隙で、明瞭な同心円状のコア・マントル構造を持つ。 有機ナノグロビュールは、筆者が「コアマントル状ア モルファス炭素粒子の発見」[1]として本誌にも発表し た2002年当時は、透過型電子顕微鏡による形状と周 辺鉱物との関連の観察及び、限られた分光分析による 化学組成の傾向が指摘できたのみで、その起源・形成 過程は推測の域を出なかった.しかしその後のナノス ケール分析法の向上・普及により飛躍的に解明が進み、 2006年にはNANOSIMSによるin situ(その場)同位体 分析によって、太陽系物質の同位体とは著しく異なる 水素及び窒素同位体比が検出されたことから、ナノグ ロビュールは分子雲あるいは原始太陽系円盤外縁部の 極低温環境に起源をもつ始原的な有機物であると確定 した[2]. 2014年現在では数多くの始原惑星物質中で ナノグロビュールの存在が確認されている[表1].本

keiko. nakamura-10nasa. gov

表1:	有機ナノグロビュールが確認された地球外物質サンプルー
	覧. 電子顕微鏡による形状の確認とNANOSIMS によるN
	同位体異常が確認されたもののみ記載.*[13]は北海道大学
	の同位体顕微鏡での水素同位体を測定.

サンプル名	タイプ	文献
Tagish Lake	CI breccia	[2]
Orgueil	CI1	[5]
Bells	CM2	[5-8]
Murchison	CM2	[5, 8, 9]
Paris	CM2	[10, 11]
Sutter's Mill	CM breccia	[12]
GRO95577	CR1	[5, 8]
NWA801	CR2	[9, 13*]
EET92042	CR2	[5, 8]
QUE99177	CR3	[5, 8, 12, 45]
ALH77307	CO3.0	[8]
Isheyevo	CH/CB	[14]
Comet Wild2	彗星塵	[5, 15-16]
Chondritic IDPs	含水・無水	[6, 17]

稿では便宜上Tagish Lake またはBells隕石中のナノ グロビュールを中心に進めるが、代表的なナノグロビ ュール研究論文全てを適宜に引用するように努めた. 隕石ごとの詳細については引用文献をご参照いただき たい.

隕石中のアミノ酸に関しては薮田博士による「始原 天体有機物研究の今とこれからI.アミノ酸」[3]を,

アメリカ航空宇宙局ジョンソン宇宙センター 地球外物質探索科学部門

図1: Tagish Lake隕石の有機ナノグロビュールのTEM明視野像

また有機ナノグロビュール以外の不溶性有機物 (Insoluble Organic Matter : IOM)に関しては癸生川 博士による「始原天体有機物研究の今とこれから II. 不溶性有機物」[4]をご参照いただきたい.

2. 有機グロビュール研究の意義

現在我々が手にとって分析することができる地球外 物質の中でも、炭素質コンドライトおよび彗星塵は最 も始原的な太陽系物質と考えられているが、その構成 物質が記録する母天体形成までのイベントは多種多様 である. 高温太陽系星雲ガスの形成(CAIs)、ガスの 凝縮・蒸発による塵の形成(マトリクス)、太陽近縁で の高温凝縮物質の形成(CAIs、コンドリュール). そ してそれらが混合・集積し微惑星を形成したのちに母 天体上での二次変成(熱変成,水質変成,衝撃変成な ど)を受ける.

コンドライトや彗星塵の中には、これら母天体上で の変成過程を経てもなお太陽系形成以前の情報を留め る物質・プレソーラー粒子(Presolar grains)が存在す る[18]. ミクロンサイズに満たないプレソーラー鉱物 粒子(星間塵, SiCやグラファイトなど)は希ガスや炭 素・窒素・珪素の同位体比異常を持つことから赤色巨 星や超新星爆発を起源とすることがわかっている[18]. また炭素質コンドライトから化学抽出されたIOMか らは500種以上の高分子有機物が検出されている。それら中には水素・窒素同位体比が太陽系(地球)の同位体比からかけ離れていることから,星間空間・極低温の分子雲を起源とする始原的なプロトソーラー(Protosolar)有機物が含まれているといえる。

これらのプレソーラー・プロトソーラー粒子、特に 変成に弱い始原的有機粒子が(1)いかにして母天体上 での変成を免れ、あるいは変成を受けつつも太陽系形 成以前の情報をとどめることができたのか。(2)変成 を受ける前の有機物本来の姿とはいかなるものか、そ して(3) 有機物が隕石中でいかにして他の構成無機鉱 物と交じり合い、共存しているのか、これら3つの謎 を解き明かすことは、その他の固体惑星物質研究と共 に太陽系構成鉱物と惑星形成解明につながる. IOM 研究における多くの偉業は、それらを化学的に抽出す る手法でのみなされてきたが、上記の3つの謎を解く ためには有機溶剤を用いないミクロトーム法や Focused Ion Beam (FIB)といった無機・有機物質を 同時に研磨できるサンプル作成法の確立と、21世紀 に入ってから急速に発展したナノスケールその場同位 体分析の普及を待たねばならなかった.

3. 有機ナノグロビュールのTEM観察

カナダの凍結湖上に落下し、サンプルの一部が隕石

落下直後に回収され冷凍保存されたTagish Lake隕石 は地球上での有機物汚染が最小限に留められた炭素質 コンドライトで,有機物のその場観察には最適であっ た. Tagish Lake隕石のバルク密度は1.67 g/ccと他の 隕石試料と比べて低密度で[19],マトリクス部分は特 に脆く,岩石試料の透過型電子顕微鏡(TEM)用薄片 作成に通常用いられていたイオン研磨法では試料作成 が困難であった.そのため,惑星間塵(IDPs)や軟金属, 生体物質の試料作成に使われていたウルトラミクロト ーム法をTagish Lake隕石のマトリクス薄片作成に応 用した[1].包埋には従来のエポキシ樹脂は使わず, 代わりに常温で液体から透明固体に変化する純粋硫黄 を使用することで,試料作成による有機汚染の可能性 を除去した.

ウルトラミクロトームで50-70 nmの厚さに薄切 りにしたTagish Lake 隕石のマトリクスには、主要鉱 物であるサポナイトやサーペンティンなどの含水ケイ 酸塩の隙間に埋まるような形で、球状のアモルファス 物質が数多く観察された(図1-3).この物質の直径 は平均200 nm、最大でも2 μmに満たず、中心部分が 空隙のものがほとんど(図1)で、薄片化によってドー ナツ状に見えるが、元は核部分が空洞のナノサイズ球 体(ナノグロビュール)である.図2下のグロビュール のように中央の空隙がないものや、明瞭な同心円状の レイヤー構造を持ち、レイヤーの間に気泡(図2下、 矢印)を含むものも確認できた.

ナノグロビュールから得られたエネルギー分散型X 線分光(EDS)及び電子エネルギー損失分光(EELS) (共に空間分解能は~30 nm)によると、ナノグロビュ ールはアモルファス炭素構造に酸素・窒素・硫黄・塩 素が含まれていることがわかった。

比較的大きなナノグロビュールのTEM明視野像 (図3a)とエネルギーフィルター像(C K-edge, 図3b) を見ると,ナノグロビュールのマントル部分はさらに 細かな炭素質粒子(100 - 200 nm)で構成されている ことがわかる[2].

その後Bells, Mighei, Murchison, Murray隕石と いう4つのCM2炭素質コンドライトのTEM観察でも 同様のナノグロビュールが確認された[19]. 化学組成 はTagish Lake隕石中のグロビュールと同様であった が, さらにくわしいEELS分析の結果, アモルファス 炭素構造は芳香族炭素の割合が高いことがわかった

図2:層状ケイ酸塩(サポナイト,網状)と硫化物(黒色)のマトリ クスに埋まる二つの有機ナノグロビュール.中心部分が空 洞でないナノグロビュールは同心円状の層をなしており, 層間に多数の気泡がある(白矢印). Tagish Lake隕石より [1].

[19]. またOrgueil隕石(CII)から化学抽出されたIOM からも、上記と同様の特性をもつナノグロビュールが 発見されたことからナノグロビュールが不溶性有機物 であることが確認された[20].

上記のような TEM 観察・分析のみの限られた情報 に基づいて、その組織が分子雲を模擬した実験生成有 機物と酷似していることから、有機ナノグロビュール もまた分子雲中で生成されたアモルファス氷星間塵が 隕石母天体に取り込まれたのち、低温に保たれたまま マトリクスの含水層状ケイ酸塩を形成したのと同じ水 溶液中で再合成されたと仮説が立てられた[1]. 2006 年に有機ナノグロビュールの窒素・水素の同位体組成 情報が得られ、その形成起源はさらに絞り込まれるこ とになる.

3. 有機ナノグロビュールの同位体組成

21世紀に入り惑星科学分野で本格的に稼動し始め た高空間分解能二次イオン質量分析器NANOSIMSの 最大の利点は,薄片試料の数十µmの領域の同位体組 成分布を100 nm以下の空間分解能で定量的なイメー ジとして最大7種の質量を同時取得できる点である

図3:有機ナノグロビュールのTEMとNANOSIMS を併用したイ メージング. (a):TEM明視野像, (b):C K-edgeエネルギー フィルター像, (c): δ¹⁵N 像, (d): δD像. Tagish Lake 隕石より[2].

(NANOSIMSの詳細については[21]を参照). 図3,4 のようにウルトラミクロトーム薄片(厚さ70 nm)を TEM観察し,ナノグロビュールの形状・化学組成・ 鉱物分布状況を把握した後,さらなるサンプルプロセ スを経ずともNANOSIMSで水素・窒素・炭素などの 同位体組成分布を取得することができる.

図3c, dに示す Tagish Lake隕石マトリクスの δ¹⁵N と δ D同位体組成像を観ると, TEM で確認したナノ グロビュールに¹⁵NとDが濃集していることが明らか である.水素が特に水熱変成に敏感である[22]ことを 裏付ける証拠として, δ D像(図3d)をみると, Dがグ ロビュールから周囲のマトリクスに滲みでている様子 が見て取れる.このような現象は窒素同位体では見ら れない(図3c). 有機ナノグロビュールの水素がマト リックスの含水鉱物の構造水あるいはその隙間に拡散 していったものと考えられる.

水素同位体に関しては、TEM観察に伴う電子線照 射により最大で δ D~+1000‰ほどの同位体分別が 起こることが確認されているため[8, 23], グロビュ ール中の水素同位体を議論する際には、水素・窒素同 位体測定後にFIBで δ D, δ ¹⁵N濃集部分を切り出し、 TEMでナノグロビュールの存在を確認するという方 法が望ましい. 図4にBells(CM2)隕石のマトリクス 部 分 広 領 域(2 μ m²)のTEM像(図4a)・ δ ¹⁵N像(図 4b)及び領域内のナノグロビュールを矢印で示す. グ

図4: Bells(CM2) 隕石のマトリクス部分広領域(2μm²)TEM・ NANOSIMS coordinatedイメージング. (a):TEM像とグ ロビュール部分の拡大図, (b): δ¹⁵N 像. 領域内のナノグ ロビュール位置を矢印で示す[6].

ロビュール以外でも100 nm以下の大きさで¹⁵Nが濃 集している箇所があるが、グロビュールは全てにおい て¹⁵Nのホットスポットとなっており、 δ^{15} Nも大きい ことがわかる.

TEMとNANOSIMSを併用したグロビュール個々 の同位体組成分析の結果,有機ナノグロビュールの δ^{15} N値はTagish Lake隕石:+200 -+1000‰[2], Bells隕石:+500 -+2000‰[5,6]と,それぞれの隕 石の全岩(bulk) δ^{15} N値:+77‰[24],+335‰[25]よ りも突出していることがわかる.また数十nmの距離 に隣接し合うグロビュールの窒素同位体組成がそれぞ れ大きく異なる(図4参照)ことから,個々のグロビュ ールの同位体組成のばらつきは,隕石母天体での水熱 変成によるものだけではなく,母天体に含まれる以前 のグロビュール形成時にすでに同位体組成が不均一で あったことがうかがえる.De Gregorioら[5]は7種の 始原隕石から化学抽出したIOM中に明らかにナノグ ロビュールの形状を保ったままの物質を確認し,これ らの形状・窒素同位体組成・有機化学組成の比較を行 い,岩石タイプによって特異な傾向があるか調査した. その結果,ナノグロビュールの窒素同位体組成に関し ては,岩石タイプ別の傾向は確認できず,バルク δ^{15} Nが高い隕石ほどナノグロビュールの数もグロビ ュール自体の δ_{15} Nも高いことがわかった[5].

4. 同位体組成から見る有機ナノグロ ビュールの起源

地球上での有機汚染の可能性:有機ナノグロビュール の¹⁵N/¹⁴N比は地球の大気窒素と比べて1.2~2倍,D/ H比では地球の標準平均海水と比べて2.5~9倍の値を 示すことから,これらが地球上での有機汚染によって 形成された可能性は排除できる[2].

小惑星・彗星など母天体起源の可能性: NAN-OSIMS による同位体イメージングで明らかになったように、 ナノグロビュールは周辺のマトリクス部分と同位体組 成が完全に異なり、またバルク同位体組成よりも明ら かに高い¹⁵N/¹⁴N(図5)・D/H比値を示すことから、ナ ノグロビュールは母天体上で形成されたものではない と断定できる.特記すべき点として、ナノグロビュー ルが含水鉱物に富む隕石マトリクス中と、水質変成が 認められていない無水鉱物からなるCR3タイプ炭素 質コンドライトマトリクスや、無水彗星塵 (STARDUSTによって持ち帰られたWild2彗星粒子 や無水IDP)の両方で見つかっていることから、小惑 星や彗星母天体中での水質変成によってナノグロビュ ールが形成された可能性は排除できる. また水質変成 によって重水素や¹⁵Nの濃縮は理論的にも実験的にも 実証されていないため、有機ナノグロビュールに関し ては、[1, 28]のような水溶液中での球体形成は当て はまらない.

超新星・炭素星など星周起源の可能性: 有機ナノグロ ビュールの窒素・水素同位体組成は太陽系組成からも バルク組成からもかけ離れていたが、炭素同位体組成 は δ^{13} C ~ - 77から+16 ‰と、バルク組成(-9 ‰)

図5: Tagish Lake隕石中の有機ナノグロビュールの窒素及び炭素同位体組成(黒丸,26個の異なるナノグロビュールの測定値. 誤差は1σ)のバルク組成との比較[2]. バルク組成: Cl1(δ¹⁵N=+31~+52‰), CM2(δ¹⁵N=+15~+47‰) [25]. ただしBells隕石(δ15N=335‰)を除く. Tagish Lake 隕石バルク組成は白抜き菱形, Tagish Lake隕石の有機物 は白抜き四角で示す[2].

図6: 有機ナノグロビュールの窒素及び炭素同位体組成領域(矢 印で挟まれた領域)とプレソーラー SiCの同位体比較.プ レソーラー SiCプロットは[18]に基づく.データ出展は[18] 参照.

と比べても大きな異常は認められなかった(図5).また数多く抽出されている鉱物星間塵・SiC [29,30]の同位体組成と比較した場合、その組成範囲がいかにわずかであるかが一目でわかるように(図6)、炭素同位体組成からみて有機ナノグロビュールはCircumstellar起源ではないことがうかがえる。有機ナノグロビュールの起源を考える場合、星周起源以外での¹⁵N及び重水素の濃縮が可能な領域を考えなければならない。

分子雲あるいは原始太陽系円盤外延部起源:重水素と 水素、あるいは¹⁵Nと¹⁴Nはそれらの質量の違いから 重い同位体を持つ分子はゼロ点振動エネルギーが低く. これらの同位体交換反応は発熱反応となる、極低温付 近では逆化学反応が起きないため、有機分子は高い D/H.¹⁵N/¹⁴N比を持つことになる.またDを含むイ オン分子が電子と結合する際. 解離結合によりD元素 が出来ることからさらにD/H比が高くなる[31, 32]. 有機ナノグロビュールが持つ水素・窒素の同位体組成 (D/H~太陽系組成の10倍,¹⁵N/¹⁴N~太陽系組成の 2倍)を可能にするには、10K以下という極低温の環境 でなければならない[33]. このような条件を満たし. メタンやアンモニアなどの単純有機物を形成するに足 る分子を持つ宇宙環境として. Bok Globuleと呼ばれ るような星間分子雲、あるいは分子雲の中でも特に密 度の高い分子雲コアが考えられる[32]. 分子雲は水素 密度が高く(水素個数密度:10³-10⁴cm⁻³),極低温(10 ~数10 K)の領域で、分子ガスが重力収縮することに

よって,星が生まれると考えられている. 分子雲と同様に重水素・¹⁵N濃縮が可能な極低温環

境として、カイパーベルトのような原始惑星系円盤の 外縁部(30 AU以遠)あるいは、原始星コアから100 AU程度離れた原始太陽系円盤外縁部があげられるこ とから[34]これらの領域でも高い重水素・¹⁵N過剰を もつ有機ナノグロビュールが形成され得る.

5. 有機ナノグロビュールの形成過程

分子雲には鉱物を核とし、その周りをCO, H₂O, メタノール、PAHなどの分子雲中の有機物、さらに 分子雲でのUVによる光化学反応で生成された有機 物・アモルファス氷と炭素質微粒子が層状にとりまく 星間塵が存在すると理論的に考えられている[35, 36].

図7:Wild2彗星塵中で観察されたシリケイト鉱物の核を持つ有 機ナノグロビュールのTEM像とC-K, Fe-KのX線元素マッ プ[16].

図8:ナノグロビュール模擬実験で生成された有機球状物質の TEM像. [39]より抜粋.

このような有機質星間塵を発案者の名前を冠して Greenbergモデル星間塵と呼ぶ.始原的隕石・彗星塵 中で見つかった有機ナノグロビュールはGreenbergモ デル星間塵と形状・サイズともに非常によく似ている. しかしながら図7のように鉱物の核を持つ有機ナノグ ロビュールは例外的で,ほとんどの場合で核部分は空 隙が観察されている.

Greenbergモデル星間塵理論に基づいて有機ナノグ ロビュールの形成過程を理解するにあたり、ナノグロ ビュールの中心空隙内にはもともとどのような物質が 含まれていたのか、という謎を解明する必要がある. ナノグロビュールをTEMで観察すると、その中心部 分はほとんどの場合で空洞(hollow)になっている。こ れは化学抽出したIOM中のナノグロビュールの場合 中心部分の鉱物が融け出てしまっただけかもしれない し、またウルトラミクロトームで薄片を作成した場合 には、中心部分に含まれていた硬い鉱物が切断の際の 物理的圧力によって押し出されてしまった可能性が懸 念される. ナノグロビュールの内部構造を観察するた め、大阪大学の松本らは放射光X線源を用いた3次元 トモグラフィーで非破壊分析を行った[37]. その結果. ナノグロビュール内部は鉱物,あるいはハーライト (NaCl)やシルバイト(KCl)のような水溶性の岩塩鉱物 や水溶液の存在も確認できなかった. TEMでのトモ グラフィー撮像でも同様の観察結果が出た[38]. 有機 ナノグロビュールはGreenbergモデル有機星間塵のよ うに鉱物を核とする代わりに、揮発性の高い氷が核と なって形成された結果.環境温度上昇に伴い核部分が 空隙になったと考えられる.図2下のナノグロビュー ルのように、核部分の空隙が存在せず同心円状構造を 持つものの場合は、揮発性氷の代わりに有機物が核と なったと考えられる。またPAHを原材料とした分子 雲空間模擬実験でも鉱物の核を持たずとも形状・大き さが有機ナノグロビュールと似通った有機球状物質が 生成できることが確認されている[39].

6. 有機ナノグロビュールの化学組成

サブミクロンの大きさしかない有機ナノグロビュー ルの詳しい化学組成を得るためには、高分解能で有機 分子の分布状態を分析できる技術が必要である.これ までは放射光走査型透過X線顕微鏡を用いた炭素X 線吸収端近傍構造スペクトル(C-XANES)分析が行わ れてきた.図9に示す有機グロビュールとマトリクス のC-XANES比較からみて、有機グロビュールは主に PAHからなることがわかる[40].

隕石から抽出したIOMと、そのIOM中に含まれる 有機ナノグロビュールのC-XANESスペクトルを比較 した結果、ナノグロビュールにはケトン基及び水酸基 を伴うPAHが多く含まれていることがわかった[7, 8]. これらのグループはまた、ナノグロビュールと IOMのC-XANES分析後にNANOSIMSを用いた同位 体分析を行った、その結果C-XANES分析で、より顕

 図9: Bells隕石中有機ナノグロビュールとマトリクスの C-XANESスペクトル比較[37]. 285eV:芳香族炭素由来の 二重結合炭素(C=C:オレフェン), 286. 5eV:芳香族ベ ンゼンに結合したケトン(-C=O)及び水酸基(-OH), 287. 5eV:カルボキシル基(-COOH)[40].

著な芳香族性を示したナノグロビュールほど高い ¹⁵N/¹⁴N比を伴うことから,芳香族性が高く¹⁵Nに富む ナノグロビュールほど,母天体上での熱変成を強く受 けていないオリジナルに近いものだと結論づけた[7, 8].これは[4]で示された加熱実験結果とも一致する. 水質変成の影響をほとんど受けていないCR3隕石中 に見られるナノグロビュールからは,N-XANES分析 でニトリル基(-C≡N)が検出されている[41].ニト リル基はまた水質変成に非常に敏感で,一般的な IOMではこれまであまり検出されてこなかった[41].

7. 隕石タイプ別によるグロビュールの 変化

有機ナノグロビュールが,隕石から抽出したIOM 中でも特徴的な球状を保持していると考えられること から(図10)ひとまとめに数多くのナノグロビュール サンプルの有機化学組成分析が可能になった.しかし これらの形状は,激しい酸を用いた化学抽出作業過程 で変形してしまっている可能性がある.また抽出過程 でIOMは必ず酸溶液中に浸されるため,[28]のような 水溶液中での球体形成が化学抽出作業途中で起こる可 能性がある。酸水溶液中で形成された球体では¹⁵Nや

図10:GR095577(CR1)から抽出したIOM中の有機ナノグロ ビュールのTEM明視野像. [5]より抜粋.

Dの凝縮は起きないため、同位体組成が低く見積もら れてしまう。化学抽出したIOM中のグロビュールの 形状・組成比較、起源の議論には特に注意が必要であ る。隕石中でのナノグロビュールの分布状況や周辺鉱 物との関係性を調べる際には、ウルトラミクロトーム とTEM観察による地道な確認作業が不可欠である。

先に述べたとおり、ナノグロビュールの窒素同位体 組成と隕石タイプには整合性はなく、また隕石中で隣 り合ったナノグロビュール同士でも同位体組成が大き く異なることがある.そのため、ナノグロビュールの 同位体は母天体上での水熱変成よりも、元来から持つ 個々の同位体組成、つまりは有機ナノグロビュールの 起源である分子雲あるいは原始太陽系円盤外延部とい うとてつもなく広大で不均一な形成環境の地域的な条 件にかぎりなく依存するものと考えられる。しかし、 隕石別にナノグロビュールのマトリクス中での分布状 況、形状を詳しく観察した結果、それぞれ特徴がある ことがわかってきた.以下に特記すべき特徴をもつも のをあげる.

QUE99177隕石(CR3)は水質変成をほとんど受け ておらず、マトリクスは細かい無水アモルファスケイ 酸塩粒子とFe・Niのメタルと硫化物粒子の集合体か らなる.QUE99177隕石はプレソーラー鉱物の含有量 も非常に多いことから、炭素質コンドライトの中でも もっとも始原的と考えられている[41-44].QUE99177 隕石の有機ナノグロビュールは、マトリクスの合間に 脈状に存在するIOMの中に点在している(図11a)[45]. このようなIOM中の含有物として存在する有機ナノ グロビュールは無水IDP中でも確認されている[15,46]. C-, N-XANES分析ではナノグロビュールと、そのま

図11: 有機ナノグロビュールのサンプル別構造比較.全てウルトラミクロトーム薄片をTEM観察したもの.
(a): QUE99177(CR3)隕石,筆者未発表赤矢印部分がグロビュール(b): Sutter's Mill(CM2)隕石[46],(c): Bells(CM2)隕石,筆者未発表,(d):南極で回収された微小隕石,[49]より抜粋.

わりのIOMの有機化学組成に際立った違いは認めら れず[45],またNanoSIMSによる窒素同位体組成も,ナ ノグロビュールを含むIOMの脈全体がグロビュール と同程度の非常に高い同位体異常を示した[45,IDPに 関しては筆者未発表データ]. このような分析結果か ら脈状IOMとその中に含まれるナノグロビュールは 非常に限られた時間内に同一の条件下で形成された、 あるいはIOMの中でグロビュールが形成されたと考 えるのが自然である.

Sutter's Mill隕石はCM2と分類されているが, Breccia状で,フラグメント毎に岩石タイプが異なる [47]. Sutter's Mill隕石では,有機ナノグロビュール はこれまでのところ無水鉱物からマトリクスからなる フラグメントでのみ観察されている[46]. このフラグ メントのマトリクスは無水アモルファスケイ酸塩粒子 とFe・Niメタル・硫化物粒子からなり,QUE99177 のマトリクスとよく似ている.有機グロビュールはこ のマトリクス中に数個の集合体をなして点在しており, 多くの場合空隙を持たない球状で比較的小さい(図 11b, [48]).

Bells 隕石 (CM2) のナノグロビュールは含水層状ケ イ酸塩マトリクス中に集合体をなしており、その存在 量は非常に多く、時としてケイ酸塩領域よりも上回る。 個々のグロビュールが持つδ¹⁵Nは非常に高いが、周 りのケイ酸塩鉱物と同様の水質変成を受けたためか、 グロビュール同士が接続し合ってAggregateを形成 していたり、また一部が泡状構造をとっている(図 11c).これに似た構造は、下記のナノグロビュールで も観察されている:

- 1)南極で回収された含水鉱物に富む微小隕石 (AMM)(図11d, [49]).
- Cold Bokkeveld(CM2.2), GRO95577 (CR1), Al Rais(CR1/2), MET01070(CM2.0)といった比較的 強い水質変成を受けた炭素質コンドライト[50,た だし酸処理後の抽出されたIOMでのみ観察].
- 3)水質変成を受けていないCR3コンドライト・ QUE99177[50,ただし酸処理後の抽出されたIOM でのみ観察].

4) 水質変成を受けていない IDP 試料 [17, 46].

図11d下のグロビュールのように同心円層の合間に 空隙が広がっているのは、もともとは図2下のような グロビュールだったのが、層間に異なる気化点をもつ 揮発性に富む有機物・氷を含んでいたため、なんらか の加熱によってこのような形状になったと考えられる. 加熱が起こった場所・期間を特定するのは難しいが、 揮発した物質が氷であれば、長時間の高温加熱は必要 ない。またマントル部分が球状を保っているため、加 熱が起こる以前にある程度強い高分子有機物である必 要がある。これを裏付けるものとして、青木と赤井 [51]はTEMの加熱試料ホルダーを用いて、ナノグロ ビュールを773Kで90分間加熱したが、ナノグロビュ ールの形状・物性に変化は生じなかった。

上記の観察結果から考察するに、CR3タイプ隕石, あるいは彗星塵のような無水鉱物からなる物質・マト リクス中に含まれる有機ナノグロビュールは、母天体 上での変成度合いが最小限に留められたオリジナルに 近い形状と考えられる.低温状態で集合体あるいは IOM有機物・あるいは有機物氷の脈中に点在してい たが、母天体中で徐々に加熱され、最も揮発性の高い 氷・有機物氷が溶け出し、その水溶液の流れに乗って マトリクス全体に拡散されていった.さらなる加熱で マトリクス全体が水質変成を受け、層状ケイ酸塩が形 成されるに伴い、個々のナノグロビュールの核であっ た氷物質も揮発し、中心部分が空隙になったまま層状 ケイ酸塩マトリクスに閉じ込められた.また高温の水 質変成を受けた場合は、グロビュールマントル中の有 機物が揮発性の高いもの順に蒸発してゆき、同心円・ 泡状の形状となった. 元々のグロビュールのサイズに も依存するが,強い水質変成を受けた隕石中のグロビ ュールは中心部の空洞が大きく,またマントルが薄く, それに伴い球状が複雑に変形する傾向がある。 上記のグロビュールの進化シナリオを確定するために は、さらなる観察・分析が必要である.

8. 将来の展望とまとめ

有機ナノグロビュールは大きさが最大でも2ミクロ ンほどと非常に小さいため、存在の確認・分布状況・ 形状・有機化学組成・同位体組成、これら全てを正し く理解するには地道な作業を要する.しかし、2002 年の発見から11年経ち、数多くの研究グループが競 い合うように研究成果を出し合った結果、上記のよう に多くのことがわかってきた.

有機ナノグロビュールが「同位体異常を持つ」とい う特徴を除けば、[28, 39]のように気相・液相中で比 較的容易にグロビュール状有機物を作成できる「生命 の起源論」という視点からこの有機ナノグロビュール を見た場合、有機物がナノグロビュールのような膜状 球形組織(membrane)を形成することは(1)薄膜内部 の有機物を外部から防御し(2)有機分子合成において 必要なエネルギーを内部に保存することができる[52]。 という点でその形状は極めて重要な意味を持つ. また 生命の起源論においては、有機ナノグロビュール自体 がいかに始原的か(プレソーラーか,プロトソーラーか, あるいは隕石母天体起源物質か)ということもさした る意味を持たない。ナノグロビュールという membrane構造を持つ有機物質が、地球だけでなく、 宇宙空間、そしてさまざまな天体で形成される普遍的 な存在で、それらは条件が整えば(Habitable planets) 生命の種となり得る、ということを特記して おく.「宇宙起源の有機物」という,好奇心を掻き立 てるが分析・解析過程で過ちを犯しやすく敬遠されが ちなサブジェクトではあるため、本論文では、「同位 体異常 | という地球上での汚染物ではあり得ない確固 たる宇宙起源の有機物が存在し、その個々の有機物質 をナノテクノロジーという手段で分析できる」という メッセージを明確にすべく,「同位体異常をもつ有機 ナノグロビュール」にのみ重点を置いて解説した.

有機ナノグロビュールは惑星物質中のIOMその場

分析の対象としてだけではなく,分子雲・始原星円盤 での軽元素同位体濃縮理論,有機星間塵形成理論,そ れらの天文学的観測との比較対象となり,惑星物質学 者と天文・物理学者,さらにはアストロバイオロジス トの交流・共同研究の架け橋となることを期待する. 現在NASAジョンソン宇宙センターで開発中の2段式 レーザー脱離光イオン化質量分析顕微鏡[53]を用いた PAHのその場マッピング,あるいはアトムプローブ などの次世代分析器で,有機ナノグロビュールの同心 円層状別の有機化学組成分布を測定することができれ ば,始原有機物・惑星系形成の理解はさらに深まるだ ろう.

謝 辞

本原稿執筆の機会を与えてくださり,また査読者と して大変有益なコメントを下さった薮田ひかる博士に 心より感謝申し上げます。

参考文献

- [1] 中村圭子ほか, 2002, 遊星人 11, 112.
- [2] Nakamura-Messenger, K. et al., 2006, Science 314, 1439.
- [3] 薮田ひかる, 2010, 遊星人 19, 28.
- [4] 癸生川陽子, 2013, 遊星人 22, 14.
- [5] De Gregorio, B.T. et al., 2013, Meteor. Planet. Sci. 48, 904.
- [6] Messenger, S.et al., 2008, LPSC 39, 2391.
- [7] Nittler, L.R.et al., 2009, Geochem. Cosmochem. Acta 73, A948.
- [8] De Gregorio, B.T.et al., 2010, Geochem. Cosmochem. Acta 74, 4454.
- [9] Hashiguchi, M. et al., 2010, Meteor.Planet.Sci.Suppl., 5181.
- [10] Hewins, R.H. et al., 2014, Geochem. Cosmochem. Acta 124,190.
- [11] Remusat, L. et al., 2011, Meteor. Planet. Sci. 45, 5327.
- [12] Nakamura-Messenger, K. et al., 2013, LPSC 44, 2759.
- [13] Hashiguchi, M. et al., 2013, LPSC 44, 1758.
- [14] Ishii, H. A. et al., 2010, Meteor.Planet.Sci. Suppl.5406.
- [15] Matrajt, G. et al., 2008, Geochem.Cosmochem.Acta

72, A603.

- [16] Nakamura-Messenger, K. et al., 2012, LPSC 43, 2551.
- [17] Matrajt, G. et al., 2012, Meteor. Planet. Sci. 47, 525.
- [18] Zinner, E. in Treatise on Geochemistry, (Elsevier, 2004) 1, 17.
- [19] Garvie, L.A.J. and Buseck, P.R., 2004, Earth, Planet. Sci. Lett.224, 431.
- [20] Garvie L.A.J., 2006, Carbon 44, 158.
- [21] 伊藤元雄, スコットメッセンジャー, 2007, 遊星人 16, 308.
- [22] Kebukawa, Y. et al., 2010, Meteor. Planet. Sci. 5, 99.
- [23] Le Guillou, C. et al., 2013, Icarus 226, 101.
- [24] Grady, M.M. et al., 2002, Met. Planet. Sci. 37, 713.
- [25] Kerridge, J.F., 1985, Geochim. Cosmochim. Acta 49, 1707.
- [26] Messenger, S., 2000, Nature 404, 968.
- [27] Floss, C. et al., 2006, Geochim., Cosmochim., Acta 70, 2371.
- [28] Dworkin, J.P. et al., 2001, Proc.Nat.Acad.Sci. 98, 815.
- [29]甘利幸子, 1993, 遊星人 2, 73.
- [30]千貝健, 小笹隆司, 山本哲生, 2001, 遊星人 10, 178.
- [31] Millar, T.J. et al., 1989, Astrophys. J. 340, 906.
- [32] 相川祐理, 2005, 遊星人 14, 168.
- [33] Rogers, S.D. and Charnley, S.B., 2004, Mon. Not. R. Astron. Soc. 352, 600.
- [34] Aikawa, Y. and Herbst, E., 1999, Astrophys. J. 526, 314.
- [35] Greenberg, J.M, 1998, Astron. Astrophys. 330, 375.
- [36] 香内晃, 1994, 遊星人 3, 94.
- [37]Matsumoto, T. et al., 2013, Geochim. Cosmochim. Acta, 116 84.
- [38] Stroud, R.M. et al., 2013, Met. Planet. Sci., 76 5143.
- [39] Saito, M. and Kimura, Y., 2009, Astrophys.J. 703, L147.
- [40] Nakamura, K. et al., 2004, in Chondrites, Protoplanetary Disk, 9067.
- [41]De Gregorio, B.T.et al., 2013, LPSC 2390.
- [42] Abreu, N. and Brearley, A., 2006, LPSC 2005.
- [43] Nguyen, A.N. et al., 2007, Astrophys.J. 656, 1223.
- [44] Floss, C., and Stadermann, F.J., 2008, LPSC 1280.
- [45] Peeters, Z. et al., 2012, LPSC 43, 5283.
- [46] Messenger, S. et al., 2012, LPSC 43, 2696.

- [47] Jenniskens, P. et al., 2012, Science 338, 1583.
- [48] Nakamura-Messenger, K. et al., 2013, LPSC 44, 2759.
- [49] Sakamoto, K. et al., 2010, Met.Planet.Sci. 45, 220.
- [50] Changela, H.G. et al., 2013, LPSC 44, 3101.
- [51] Aoki, T. and Akai J., 2008, J. Mineral. Petrol. Sci. 103, 173.
- [52] Deamer, D.W. and Barchfeld, G.L., 1982, J. Molecular Evolution 18, 203.
- [53] Clemett, S.J. et al., 2012, LPSC 43, 2889.