特集「月惑星探査の来たる10年:第二段階のまとめ」 その場年代計測装置による月惑星年代学探査 三浦 弥生³, 荒井 朋子⁷, 諸田 智克², 亀田 真吾4. 吉岡 和夫5. 長 勇一郎¹ 並木 則行7 隆司 小林 正規⁷. 石橋 高⁷. 岡崎 <u>7</u>. 博紀⁷, 和田 浩 橘 省吾[°], 渡邊 誠一郎², 宗祐 千秋 杉原孝充¹⁰, 親寿。 古本 宗充2 石原 吉明¹¹ 竹 直紀子。 本田 大 , 直樹5 譲⁵, 武田 弘¹², 寺田 健太郎¹³, 唐牛 鎌田 國井 康晴¹⁵. 大槻 真嗣⁵. 小林 進悟¹⁴. 1,16 13 杉田 精司 白机

2012年7月4日受領, 2012年7月27日受理.

(要旨)月面クレータ記録とアポロ試料の年代測定結果との対応付けによって、クレータ年代学という絶対 年代計測の手段が獲得され、我々は太陽系内側部における天体衝突史や月惑星表面上で生起したさまざまな 現象を時間軸の目盛り入りで理解するに至っている.しかし太陽系の年代学には未だ大きな不確定性があり、 後期重爆撃期や巨大惑星大移動の有無、火星絶対年代スケールの獲得などが重要問題として残されている. 将来の月惑星着陸探査によってこれらを解決し、太陽系進化の描像をより具体的に得ることは今後の重要な 科学目標である.我々は、今後10年の惑星探査に不可欠な手段と考えられる「その場年代計測装置」の開発と、 それを月探査に応用したミッション提案を行ってきた.本稿では着陸探査による年代計測の科学的重要性、 装置開発の進捗状況と現状の問題点、及びミッション提案の概要について説明する.

1. 月惑星年代学探査の提案

日本における今後の月惑星探査を力強く推進するた めには、一連の探査計画において共通の柱となる理学 目標の設定が必須であることは言うまでもない.惑星 科学が目指す一つのゴールは、太陽系で起こったとさ れる様々なイベントの有無と相互の因果関係を解明し、

1. 東京大学理学系研究科 2. 名古屋大学 3. 東京大学地震研究所 4. 立教大学理学部 5. 宇宙航空研究開発機構宇宙科学研究所 6. 九州大学理学府 7. 千葉工業大学 PERC 8. 北海道大学 9. 会津大学先端情報科学研究センター 10. 海洋研究開発機構地球深部探査センター 11. 国立環境研究所 12. 千葉工業大学フォーラム研究 13. 大阪大学大学院理学研究科 14. 放射線医学総合研究所 15. 中央大学理工学部 16. 東京大学新領域創成科学研究科 cho@astrobio.k.u-tokyo.ac.jp

太陽系形成から現在に至る歴史を滑らかにつなぐこと である.このような観点から我々は月惑星年代学を柱 として,太陽系進化史の解明を目指したその場年代測 定機器の開発とそれを用いた探査計画を提案する.

ここで述べられる提案内容は,来る10年活動にお いてそれぞれ「K-Ar法を用いた月・火星着陸探査用そ の場年代計測装置」提案と「月面年代学シリーズ探査」 提案として別々に提案されたものである.しかし,両 提案の科学的意義は月惑星年代学の推進という点で共 通しており,また,後者の実現性は前者の開発状況に 強く依存していることから,本稿では両者を一本化し 提案することとした.

2. 月惑星年代学における現状の 問題点と科学的意義

月惑星年代学の歴史はクレータ年代学の歴史と言い 換えても過言ではない.月や火星は太陽系内側部にお ける天体衝突の良い記録媒体であり,特に月面では太 陽系初期から現在までの衝突履歴がほぼ完全に保存さ

図1:月面のクレータ年代学関数.灰色の楕円はアポロ・ルナ試 料の放射年代とクレータ数密度の関係を示す.

れている.月ではアポロ・ルナ計画で持ち帰られた岩 石試料の放射年代と着陸地点のクレータ密度の関係づ けがなされている(この関係をクレータ年代学関数と 呼ぶ)[1].それにより,太陽系内側における天体衝突 史の復元と,クレータ数密度計測にもとづく年代測定 手法(クレータ年代学)の構築が行われ,太陽系小天体 の衝突破壊・軌道進化史や月惑星表面の地質進化史に 関しての多くの知見が得られている.

しかし、アポロ・ルナ岩石試料中で絶対年代と地質 イベントとの対応がとれているものは、30~39億年 前の海の玄武岩や、1億年よりも若いクレータに限ら れているため、1~30億年前と40億年以前の年代範囲 のクレータ年代学関数には大きな不確定性が残されて いる(図1). 例えば20億年付近に年代を持つ領域の場 合, 用いる年代学関数によって得られる年代に6億年 以上の差異が生じる.また、月以外では火星起源と考 えられる隕石が発見されているが、これらの隕石の結 晶化年代が火星のどの地質ユニットの年代を反映して いるのかは明らかでなく、試料の絶対年代と地質イベ ントとの対応は取れていない. このように月惑星の年 代学における時間軸は確立されたとは言い難いのが現 状であり、今後の探査によって月面における未取得年 代範囲の試料と各惑星(特に火星)の試料を獲得し、表 層進化史に時間軸を入れることは最重要課題である. 以下では、3つの主要な問題に着目し、絶対年代を獲 得することの意義を概説する.

2.1 40億年以前の衝突史

月における40億年以前の試料採取の意義は後期重 爆撃仮説の検証にある、アポロ試料中の衝突溶融岩の 放射年代は38~40億年に集中しており、このことか ら一部の月科学者は39億年前に天体衝突が活発にな った時期があったと考えている、これは後期重爆撃仮 説と呼ばれる[2]. 一方,アポロ試料は特定の衝突盆 地からの放出物に汚染されているために一様な年代を 示しているにすぎない、という反対意見もある、この ように後期重爆撃は仮説の域を出ていないにも関わら ず、その原因はこれまで太陽系規模の軌道進化の枠組 みの中で議論されてきた. 例えばGomes et al. [3]は 太陽系初期の巨大惑星の急激な軌道移動と関連づけて 後期重爆撃期の原因を説明している。今や後期重爆撃 仮説は太陽系形成の描像を左右する問題であり、月科 学における最優先課題の一つである。これを検証する ためには、ネクタリス盆地などの古い衝突盆地の年代 を決定することで、40億年前以前の衝突率がどのよ うに減少したのかを明らかにする必要がある(4.2節参 昭)

2.2 過去30億年の衝突フラックス

太陽系内側の衝突フラックスに関するもう一つの問 題は、過去30億年の衝突頻度の長期的時間変化である. 小惑星帯の衝突進化の数値計算研究は、約30億年前 から現在にかけて天体衝突頻度が1/3程度減少した可 能性を示唆する[4]. 一方で、放射年代が得られてい る月の海のクレータ記録と若いクレータのクレータ数 密度の比較から、過去30億年間、月面におけるクレ ータ生成率はおおよそ一定であったと解釈されている [1]. 35億年前以前の大規模なクレータ形成期が終了 した後の衝突フラックスの変動は、地球近傍天体 (NEOs)供給過程とNEOs ソースの規模の時間変化を 制約するために重要な情報となる。この問題を決着さ せるためには、25~5億年前に対応するクレータ密度 を持つ領域の放射年代を得ることが重要である。その ような地点としては、コペルニクスクレータや月面で 最も若い溶岩流が挙げられる(4.2節参照).

2.3 火星の絶対年代

火星表面の年代推定に用いる年代学関数は、上述し

た月の年代学関数をベースとし、重力効果や衝突天体 の軌道要素・衝突確率の違いに対する解析的研究[e.g., 5]に立脚して推定されている.そのため、火星のクレ ータ年代学にはモデルに応じて10億年もの不定性が あることが指摘されており、火成活動や気候の進化を 考える上で大きな不確定要素となっている[6].今後 の探査によってクレータ数密度が明らかな地点に着陸 機を降ろし、その地質ユニットを代表すると判断でき る岩石の年代を相対誤差数10%以内で計測すること ができれば、定量的な火星史の議論を開始することが 可能となる.また、火星試料に絶対的時間軸を付与す ることは、火星と月の天体衝突率の直接比較を可能と し、太陽系内側における衝突天体のソースの制約に重 要な役割を果たす.

惑星探査による岩石固化年代の その場計測

3.1 年代その場計測の意義

以上のような重要問題を解決するためには、対象天 体に着陸して地質ユニットの年代を反映する岩石の絶 対年代を計測することが必要不可欠である.これらの 問題を最終決着するには、地球へのサンプルリターン による正確・精密な年代計測が必要だろう.しかし、 サンプルリターン探査は技術的・コスト的に大きな困 難を伴う上に、いざその場で地質ユニットの年代を反 映する最適試料を一発必中で選別するのは至難の業で ある.一方、年代のその場計測が実現すれば、試料を 複数個採取した上での繰り返し計測ができ、年代デー タの吟味が可能となる.サンプルリターンミッション の際に地球で詳細計測をする価値がある試料の選定を 行うことも期待できる.

3.2 K-Ar法によるその場年代測定

そこで我々は、K-Ar法と呼ばれる年代測定法を用 いて、惑星着陸探査によって岩石の固化年代をその場 計測する装置の開発を進めている。K-Ar法とは、カ リウムの放射性同位体である⁴⁰Kが⁴⁰Arに放射壊変す る現象(⁴⁰Kの半減期 = 125億年)を利用して岩石の固 化年代を推定する方法である。K-Ar法には後述する Arのロスなどの問題点があるが、他の年代測定法に 比べて岩石中の親核種の存在度が高いことや希ガスで ある Ar の測定が比較的簡便であることなどから,技術的には大きな優位性がある.一方,Rb-Sr法やSm-Nd法は,測定対象となる元素の存在度が非常に少ない上に化学処理が必要であるため,測定手順が複雑で装置も大型化してしまい,探査機に搭載するには技術的困難が大きい.また,Ar-Ar法は試料への中性子照射によって³⁹Kを³⁹Arに変換して同時に質量分析器で計測する.そのため精度を高めやすく,Arロスの評価も行うことができるという利点があるが,現在のところ探査対象天体上で中性子照射を行うことは技術的に難しい.

K-Ar法によるその場年代計測の計画は欧米のミッ ションでも提案されてきたが、未だに実現はされてい ない. 2003年に打ち上げられたESAのMars Express にランダーとして搭載されていたBeagle 2において は、X線蛍光法によるKのバルク計測と、700℃~ 1100℃の高温炉によって試料から抽出するArの磁場 型質量分析計による計測とを組み合わせた年代計測が 計画されていたものの[7]. 火星投入時に通信が途絶 した. また, 2012年8月に火星に着陸したNASAの 巨大ローバMars Science Laboratory(MSL)において は、後述するLIBSによりKをバルク測定し、高温炉 によってArを抽出することで年代計測を行うオペレ ーションが予定されている.しかしながら、この方法 には、鉱物中のArの拡散係数を考えると高温炉では Arを全て抽出できない可能性があること、全岩分析 では後述する過剰Arの寄与を評価できないこと、と いった問題点がある[8].

ー方我々の提案する年代計測装置は、高エネルギー 密度のレーザーパルスを試料に照射することで直下点 をプラズマ化してKとArを同時に抽出し、Kをレー ザー誘起プラズマ分光法(Laser-induced breakdown spectroscopy; LIBS)によって、Arを四重極質量分析 計(Quadrupole Mass Spectrometer)によって定量す る(LIBS-QMS法).本手法ではレーザーによる高空間 分解能のスポット分析(レーザーのスポット径〜数百 μ m)が可能な上、岩石の同一部分についてKとArを 測定することになるため、岩石内のK・Ar分布の不 均一性に左右されずに計測できる.また、試料はレー ザーによって瞬間的には10000 K以上に加熱されるた め、照射点直下に含まれるArは全て放出されること が期待される.さらに、1つの岩石試料に対して複数

図2: LIBS-QMSシステムの概念図.

の鉱物の計測を行うことが可能となるため、アイソク ロン法による計測が期待できる.これは従来の提案法 (全岩分析)では不可能であり、年代計測の精度と確度 を格段に向上できるメリットを持つ.

3.3 年代計測装置の開発状況

我々は上述のK-Ar年代計測の実現性を検証するた め、原理実証用の装置を製作した.これは、試料を導 入する真空チャンバー、LIBS測定のためのレーザー・ 分光器,放出されたArを測定するQMS,放出された ガスを精製するTi-Zrゲッター,Arより重い希ガスを 回収するチャコールトラップ,および装置全体を高真 空に保つための真空ポンプから構成される(図2).な お、月探査の場合には真空ポンプが不要となるためリ ソースの大幅な節約が可能となる.以下では、本装置 を使い得られたK検量線と年代既知試料の分析結果 について述べる.

(1) LIBSによるK計測モデルの構築

LIBSによるKの定量は、K濃度が既知の試料にレ ーザーを照射してスペクトルを取得し、そのシステム に固有のK濃度-K輝線強度関係を予め較正しておく ことによって行う.較正試料には、岩石標準試料粉末 を高圧プレスによって押し固めたペレットを用いた. レーザーはNd:YAGレーザー(波長1064 nm,パルス 幅6 ns,パルスエネルギー100 mJ,スポット径500 μm)を用いた.レーザープラズマからの発光はレン ズによって集められ、光ファイバを通じて分光器 (Ocean Photonics HR2000+)へ導入された、プラズマ の発光開始前から分光器のシャッターを開き、1

図3: 試料のK₂O濃度と輝線強度との関係. K輝線の強度は酸素 輝線の強度で規格化した.

msecに渡って時間積分した発光を取得した.図3に, K濃度とK輝線の強度との関係を示す.発光輝線の絶 対強度は、レーザーエネルギーの変動や表面状態の変 化、光学系の透過率等の諸要因によって変動しうるた め、これを検量モデルに用いるのは定量の不確定さを 増加させる.そこで、岩石試料に普遍的に存在する酸 素原子の呈する輝線(777 nm)の強度でK輝線(769 nm)の強度を規格化してこれらの影響を取り除く.K の最も強い輝線は766.4 nmに存在するが、今回用い た分光器の分解能では分離不可能な波長にMgの輝線 が重なってしまっているため用いていない.縦軸のエ ラーバーは、一つの試料につき計測した4点の標準偏 差である.各データ点を冪関数でフィッティングして 検量線とした.

(2) 年代標準試料の計測

K量,Ar量の感度較正が済んだ段階で,年代既知 の試料の計測を試みた.試料は鉱物分離された Hornblende(K₂O=0.93 wt%, age=1.74 Ga)を高圧プ レスによってペレット状に成型したものを用いた.試 料表面に吸着した大気を取り除くため,真空中で180 ℃・24時間のベーキングを行った.レーザーを試料 へ500回(20 Hz × 25秒)照射して試料のLIBSスペクト ルを取得した(図4).真空ライン内でゲッターを用い, レーザー照射によって放出された気体から活性ガスを

図4:年代標準試料(Hornblende)のLIBSスペクトル.

除去した後に、液体窒素で冷却したチャコールトラッ プによってArより重い希ガスを回収した. 一旦ライ ンを排気した後再度ラインを閉鎖系にし、トラップを 加熱して放出させたAr等をQMSへと導入して質量 分析を行った. 図5にAr周辺のマススペクトル示す. Arの安定同位体は質量数36,38,40をもつ. 質量数37 と39のピークは炭化水素である. 大気Arの³⁸Ar/³⁶Ar 比は0.188であるが、分析試料の38/36比はそれより 高く,38の大部分は炭化水素であると考えられる. 質量数36についても、残留ガスのマススペクトルか らArと炭化水素の混合であると推測される.

まず、LIBS計測で得られた発光スペクトルを検量 モデルに当てはめ、K₂O=1.0±0.2 wt%を得た.これ は0.93 wt%と誤差の範囲で一致する.さらに、レー ザーによって放出されたKの絶対量(mol)を見積もる ために、試料が掘削された体積を顕微鏡観察によって 計測した.レーザークレータの体積が(4.4±0.5)×10⁵ cm³であったことと、Hornblendeの密度として3.2± 0.3 g/cm³を仮定することで、レーザーによって掘削 された試料の質量を(1.4±0.2)×10⁴ g、その中のK原 子の数を(3.0±0.6)×10⁸ molと推定した.

一方,放出されたガスのQMSスペクトルから,放出された⁴⁰Arのうち,放射壊変起源の⁴⁰Arは(2.9±0.6)×10⁸ [cm³ STP]=(1.3±0.3)×10¹² [mol]であると見積もった(STP:標準温度圧力).このとき大気混入の寄与は、地球大気中の同位体比⁴⁰Ar/³⁶Ar=296を用いて、

 $[{}^{40}\text{Ar}]_{rad} = [{}^{40}\text{Ar}]_{total} - [{}^{40}\text{Ar}]_{atm} = [{}^{40}\text{Ar}]_{total} - 296 [{}^{36}\text{Ar}]$

図5:年代標準試料から放出されたガスのマススペクトル(質量 数36から40まで). Arの安定同位体は質量数36,38,40に 存在する.

図6:ある年代とK濃度を持つ試料を100μg(500-1000パルスに 相当)溶融させた際に放出される⁴⁰Ar量. 検出限界(3×10⁻¹⁰ cm³)よりも上の白い背景の領域が現状で検出可能な領域を 表す.

により差し引いた. 質量数36には炭化水素も含まれ ているため[⁴⁰Ar]_{atm}量を過剰に見積もることになるが, 今回の試料では[⁴⁰Ar]_{rad}量が相対的に多いためその影 響は分析誤差の範囲に収まる. なお, QMSのArに対 する感度は既知量のArをシステムに導入することに よって事前に較正している.

Arの検出限界は装置の残留ガス量(バックグラウン

ド) に制約されている.現在のシステムでは³⁶Ar, ⁴⁰Ar に対してそれぞれ1×10¹¹ cm³ STP, 3×10¹⁰ cm³ STPであった.この値を用いることで,数百回~1000 回程度のレーザー照射を行って100 μ gの試料を蒸発 させたときに放出されるArから,計測可能な岩石の K濃度とその年代との関係を見積もることが出来る. 現状の⁴⁰Ar検出限界では,例えば10億年以上の年代 をもつ岩石が検出限界を超える量の放射起源⁴⁰Arを 持つために必要なK₂O濃度は数百ppmである(図6).

今回はK量が均質な試料を用いておりアイソクロ ンを引くことはできないため、以下のモデル年代の式 によって年代値を算出する.

$$t = \frac{1}{\lambda} \ln \left(\frac{\lambda}{\lambda_e} \frac{[^{40}\text{Ar}]_{\text{rad}}}{[^{40}\text{K}]} + 1 \right)$$

ここで λ (=5.543×10¹⁰ yr⁻¹) は⁴⁰Kの壊変定数、 λ_e (=0.581×10¹⁰ yr⁻¹) は⁴⁰Kの⁴⁰Arへの壊変定数を表す (⁴⁰Kは10.5%が⁴⁰Arに、89.5%が⁴⁰Caに壊変する[9]). [⁴⁰Ar]_{rad}は放射起源⁴⁰Ar量、[⁴⁰K]は現在の⁴⁰K量を表す.

今回の測定値を年代算出式に代入すると、t=2.7± 0.5 Gaという値が得られた. LIBSとQMSを組み合わ せた本手法のような計測法によってK・Arが同時計 測された例は未だかつて無く、具体的な年代値の算出 は、我々が知る限りこれが初めての試みである、試料 の年代値(推奨値)は1.74 Gaであるので、現状では約 60%の相対誤差がある.これは、Kに対して⁴⁰Arが期 待される量の1.8倍放出されたことを示唆している. 今回の分析における⁴⁰Ar過大評価の要因は、レーザ ーによって掘削されたクレータの壁面が加熱されるこ とによるArの拡散放出, Ar検出感度較正のずれ、お よびK絶対量を求めるために用いた掘削体積の見積 もりの誤差などが考えられる。これらの誤差を小さく するために、レーザー照射周波数を現状の20Hzから 下げることによる試料への熱の蓄積の抑制。感度較正 実験の見直しを現在行っている。第三の要因について も確認実験を進めるが、実際の探査では年代既知試料 を較正試料とすることで掘削体積の値を年代計算に使 用しない計測手法を開発予定である。すなわち、既知 のAr/K比(年代)を持つ試料を複数測定して、「40Ar電 流値(QMS)]/[K 輝線強度(LIBS)]の値の較正線を描く という方法である.本結果はLIBS-QMS法を用いた最 初の年代計測結果であるため、現状での年代測定値の 精度・確度は必ずしも満足出来るものではない. しか し具体的な年代値の算出によって、上述したような今 後の改善の方向性が明らかになったと言える。

また装置の重量については、現在のところ比較的高 エネルギーのレーザー, 商用クラスのQMSおよび分 光器を用いているため総重量は100 kg以上ある。但 し重量の大部分は汎用的なレーザー68 kg(ヘッド24 kg. 電源・冷却ユニット 44 kg)と一般的な真空ポン プ 37 kg(ターボ分子ポンプ 11 kg, ロータリーポンプ 26 kg)が占めている.残りはQMS 3.8 kg(分析管+コ ントローラ), 分光器(0.57 kg), 真空配管・ヒータ(数 kg), 光学系(約1 kg)である,現状ではこのように市 販の機器を組み合わせた装置を用いてLIBS-QMS法 という新手法の実現に向けた実証実験を進めている段 階である、今後、装置をK-Ar年代計測に特化させ小 型化できる余地は充分にあるが、試料採取ロボットな ども含めた具体的な設計は今後の課題である. SELENE2以降のローバに搭載することを想定し、惑 星探査機への搭載実績のある小型レーザー(2 kg),分 光器(約500 g), QMS(1 kg), 小型化した真空システ ムなどによりトータルで10 kg程度まで軽量化するこ とを目標としている. 大気を排気する必要がない月探 **杳では真空ポンプを搭載する必要がなく、より軽量な** 測器となる見込みである.

3.4 試料選定

K-Ar法はその性質上,(1)試料の二次的変成や衝突 脱ガスによるArのロス(年代値の若返り),(2)大気起 源・マントル起源・太陽風の打ち込みなどに由来する 非放射壊変⁴⁰Arの寄与(年代値の過大評価)といった ことが問題となり得る.意味ある年代値を求めるため には,試料の採取地点の特徴や岩石組織,鉱物観察な どを多角的に用いて予め問題のある試料を避けること と,試料の妥当性を測定によって評価できることが必 要である.以下では探査において考慮すべき項目を列 挙する.月面での試料選定については4.3節において 述べる.

火星探査において問題になると考えられるのは、大 気やマントル由来の過剰⁴⁰Arである。火星隕石の一 種であるShergottiteには、マントルに含まれていた 40 Arが溶岩噴出時に脱ガスせずそのまま閉じ込められ たと考えられる過剰⁴⁰Arが広く見られる[e.g., 10]. た だしその量は $1-2 \times 10^6$ cm³ STP/g程度であるため、K 量が多く年代値が古い試料の場合には寄与は小さいと 期待できる.いずれにせよ,複数試料の分析とアイソ クロン法に基づいてこれらの影響を評価することが重 要である.なお,火星探査において高精度のアイソク ロンを引くためには,長石系のKに富む鉱物を計測す る必要がある.そのため顕微分光カメラなどを用いた 鉱物の判別が必須である.火星試料について10%の 精度で年代を決定できるアイソクロンを引くためには, KおよびArの定量誤差を10%としたときに,4倍程 度のK濃度範囲をもつ鉱物を約10点計測することが 必要だと見積もられている[8].

また火星には大気が存在するので、試料への大気成 分の混入も考慮する必要がある。現在の火星大気には ⁴⁰Ar/³⁶Ar=1700-1800程度の同位体比を持つArが存在 しているが[11]、火星表層の大気圧は地球の100分の1 程度と比較的低く、火星隕石の中では衝撃を受けてガ ラス化した部分に存在するのみである。そのため、火 星上では衝撃による岩石組織のガラス化と大気の溶け 込みが生じていない試料を注意深く採取すれば、大気 混入は大きな問題にならないかもしれない。

また,水質変成が起きている可能性が高い堆積岩地 帯ではK-Ar年代計測の適用が難しいだろう.そのた め,Noachianの古いユニットを計測する場合には, 流水による変成や衝突脱ガスを受けていないと判断で きる着陸地点を慎重に探す必要がある.一方で,乾燥 寒 冷 気 候 が 卓 越 し 天 体 衝 突 の 影 響 も 少 な い Amazonianのユニットの計測であれば,二次的変成 の影響は比較的小さいと期待できる.いずれの場合に おいても,岩石の表面数mmを覆う風化層を計測前に 除去することは必須である.

4. 月面年代学探查

4.1 探査の概要

ここでは月面のクレータ年代学関数の完成に向けた ミッション提案を行う.本ミッションでは、ローバ搭 載のLIBS-QMSシステムによるその場K-Ar年代測定 装置を用いて月面の重要地域の年代決定を行うことを 念頭に置く.搭載機器を絞り込むことで軽量化し、月 面の重要な地域を複数回に分けて調べるシリーズ探査 とする.さらにサンプルリターン探査も視野に入れる ことで系統的な年代学的理解を得ることを目指す.

4.2 探査候補地点とシリーズ化の戦略

2節で述べた科学目標の達成のために以下の条件に 合致した領域を着陸点とする(図7).

- (1)過去に探査経験がなく、1~30億年前、40億年以前の年代範囲に対応したクレータ数密度を持つ領域。
- (2)月の地質学的進化史において年代情報が重要な意義を持つ領域。

これらの条件に適した領域として,月面の年代学的・ 地質学的な現状理解に基づいて以下を着陸候補点に挙 げる.

- (A) コペルニクスクレータ内部
- (B)月面で最も若い溶岩流(嵐の大洋・雨の海領域中 心部)
- (C)ネクタリス盆地のリム付近,または同等のクレ ータ数密度を持ち、フロアーが溶岩流に覆われて いない衝突盆地の内部.

(A),(B)の領域は1~30億年,(C)の領域は40億 年かそれ以前の年代に対応したクレータ数密度を持つ 領域であり,着陸点の条件(1)を満たす.また,(A), (C)領域の形成は月の地質区分を定義する重要イベン トであるため,条件(2)を満たしている.(B)は最も 長い期間,海の火山活動が続いていた領域であり,そ の絶対年代の獲得は月の熱史を制約する上で重要であ るため探査地点として提案する.

一般に、月面上の若い領域ほど岩石固化後の衝突再 加熱によるArロスの可能性や衝突による混合の影響 が小さく、得られるデータの解釈がしやすいと考えら れる.そのため第一弾の探査は上記候補地点の中で層 序学的に最も若い領域であるコペルニクス(A)を探査 地点とし、その場K-Ar分析装置の実証実験を兼ねた 地質探査・年代測定探査を行う、その際に、その場 K-Ar分析からArロスの無いと思われる試料、すなわ ちより古い年代を示す試料を選別してサンプルリター ンを行う、持ち帰った試料について、Ar-Ar法など他 の手法を用いてより正確な年代測定を行うとともに、 その場K-Ar分析の有効性を検証する、その場年代計 測の有効性が実証された後、月面で最も若い溶岩流 (B)、衝突盆地(C)の順で探査を行う.

2節で重要問題として挙げた後期重爆撃の検証・過

図7:探査候補地点.(A)コペルニクスクレータ.(B)月面で最も若い溶岩流.(C)ネクタリス盆地.(C') はネクタリス盆地に近いクレータ数密度をもつ衝突盆地を示す.A,Lはアポロ・ルナ試料の採取地 点を表す.

去30億年のフラックスの時間変動の検出には、とも に1億年程度の誤差(2.5~5%の精度)での年代推定が 必要である.一方でその場K-Ar年代計測法の現在の 目標誤差は10%であり,科学目標に対する要求精度 を満たしていないが,多数の岩石を分析することで年 代の頻度分布を求め,得られた年代データがどのモデ ルに整合的かを統計的に議論することを目指す.ただ し,鉱物アイソクロン法による測定精度は試料中のK 含有量の不均質性(変動幅)にも依存し、また、分析し た岩石がArロスを経験していないとは限らない.そ のため、分析に必要となる岩石数を見積もることは容 易ではなく、今後の検討課題である.

4.3 年代測定試料の条件・選定方法

K-Ar分析に適した試料の条件として,(a)地質ユニ ットとの対応付けが可能であること,(b)K-Ar年代が リセットされていないこと,(c)太陽風の影響がない ことがあげられる.月面の岩石は天体衝突によるかき 混ぜなどによって角礫岩化された,極めて複雑な履歴 を辿ったものであることが多い.また,度重なる衝突 による再加熱のためにK-Ar年代がリセットされてい る懸念もある.そのような岩石を選んでしまっては, 地質ユニットとの対応づけが困難であり,信頼出来る 年代値も得られない.そのため試料の選定には慎重さ が要求される.そこで,衝突クレータ内部で形成され たインパクトメルトシート岩体や溶岩流から,ごく最 近のクレータリングで掘削され,周囲に飛散した新鮮 な岩石を選んで分析する、このような岩石は、岩石固 化後のK-Ar年代リセットの可能性が低く、かつ角礫 岩化していなければ地質ユニットとの対応付けが容易 である. 掘削を起こしたクレータリングで年代がリセ ットされたか否かは次のようにして判断する.まず分 光カメラを用いて鉱物同定と岩石組織の観察を行い 変成の程度を確認する。次にLIBS-QMS分析によりア イソクロンを引く、このとき、直線のアイソクロンを 示さない試料は脱ガス等の二次的影響があると判断し て年代測定の対象からは外す.一方で、掘削時のクレ ータリングで完全にArが散逸して年代が完全にリセ ットされてしまった場合は、岩石の年代は着陸点領域 の年代よりも極めて若い年代となり、場合によっては 放出される放射起源⁴⁰Ar量は現状での本測器の検出 限界以下であると推測される。そのため、掘削時のク レータリングによるリセットを受けた試料かどうかは 分析結果から判断可能である.

月試料におけるもうひとつの問題は太陽風に含まれ るArの打ち込みである.月には大気が存在しないた め太陽風は直接月表層に到達する.試料が溶岩であれ ば表面の数百nm程度の深さまでしか侵入していない が、レゴリス角礫岩である場合には、岩石組織の至る 部分に太陽風起源Arが混入している.しかもその ⁴⁰Ar/³⁶Ar比は一定ではないため、放射起源⁴⁰Ar量を 見積もることが困難である.岩石表面を研磨して内部 を露出させ、岩石組織を観察して角礫化していないこ とを確かめることが必須である.さらに、太陽風には HeやNeなどが多く含まれるので、これらをQMSに よって同時に分析することで太陽風の寄与の有無を判 定する.また、高エネルギー宇宙線による核反応で岩 石中にAr同位体が生成される場合もあるが、その寄 与は³⁸Ar/³⁶Ar比からある程度見積もることが出来る. 太陽風由来や宇宙線照射起源の希ガス同位体を検出す ることもQMSでの重要な分析項目の一つである.

月の斜長岩中のK濃度は低く(数百ppm以下)高地 岩石の測定は困難であるが,一方で表側の Procellarum KREEP Terraneと呼ばれる海領域には 比較的K濃度の高い(~3000 ppm)岩石が存在してい ると考えられている[12]. この値は本システムの検出 限界を上回っており,年代計測が可能であると考えら れる.よってここに位置するコペルニクスクレータ(探 査候補地点A)や海の玄武岩(探査候補地点B)は適切 な探査対象と考えられる.

なおここでは分光カメラの候補として,SELENE-2 プリプロジェクトに搭載を検討中であるマルチバンド 分光双眼カメラ(LMUCS)を想定している[13]. 月面 走行ローバは,SELENE-2の開発により本探査を行う 時点では確立されていると期待される.現状では,ロ ーバ重量100 kg,ペイロード重量10 kg程度を想定し ている[14].

謝 辞

本研究を遂行するに当たって、東京大学の長尾敬介 教授には年代標準試料を提供して頂きました.また東 京大学物性研究所の八木健彦教授には高圧プレスを使 った試料の作製をさせて頂きました.感謝いたします. 匿名の査読者のお二人には、本稿を改善する上で大変 建設的で有意義なコメントを頂きました.この場をお 借りして御礼申し上げます.

参考文献

- Neukum, G., 1983, hablilitation thesis, Ludwig-Maximilians-Univ., Munich, Germany.
- [2] Tera, F. et al., 1974, Earth Planet. Sci. Lett. 22, 1.
- [3] Gomes, R. et al., 2005, Nature 435, 466.
- [4] Durda, D. D. et al., 1998, Icarus 135, 431.
- [5] Ivanov, B. A., 2001, Space Sci. Rev. 96, 87.

- [6] Doran, P. T. et al., 2004, Earth Sci. Rev. 67, 313.
- [7] Talboys, D. L. et al., 2009, Planet. Space Sci. 57, 1237.
- [8] Bogard, D. D., 2009, Meteorit. Planet. Sci. 44, 3.
- [9] Steiger, R. H. and Jager, E., 1977, Earth Planet. Sci. Lett. 36, 359.
- [10] Bogard, D. D., 2009, Meteorit. Planet. Sci. 44, 905.
- [11] Bogard, D. D. et al., 2001, Space Sci. Rev. 96, 425.
- [12] Kobayashi, S. et al., 2010, Space Sci. Rev. 154, 193.
- [13] 杉原孝充ほか, 2011, 日本地球惑星科学連合2011 年大会, PPS024-34.
- [14]田中智ほか, 2010, 遊星人 19,3.