特集:MELOS火星複合探査の科学検討 MELOSで狙う内部構造探査 小林 直樹¹,菊池 冬彦²,新谷 昌人³,栗田 敬³, 田中 智¹,岩田 隆浩¹,佐々木 晶²

2009年4月21日受領, 2009年5月12日受理.

(要旨) 火星内部構造はその原材料物質,集積過程,熱進化を理解する上でも重要である.コアの組成と大 きさはマントルのFe含有量,ペロブスカイト層の存在,厚みを左右しマントル対流にも影響を与える.マ ントルからの溶融物でできた地殻は発熱性放射性元素を濃集する.地殻の厚みは火星の慣性能率の値に影響 するため,コアの大きさの推定において不定要因になっている.火星の熱進化や内部構造の推定において地 殻の厚さの決定は重要である.コア半径や地殻の厚さを計測するには地震計測が有効であり,コアの組成や 地殻厚の分布を決めるには精度の高い回転変動計測,重力場計測が求められる.また,活きた火星の活動を モニターする上でも地震計測やVLBI 計測,熱流量計測,電磁気観測は欠かせないものである.

1. はじめに

惑星や多くの衛星は分化した内部構造を持つことが 知られている.分化の様態は惑星のサイズや惑星を構 成する物質組成,内部の温度状態に依存し,惑星や衛 星の集積過程,その後の進化を反映したものである. 火星の内部構造の現在の姿を知ることは火星の形成史 や地表環境にも影響を与えるその後の熱進化を議論す る上でも重要である [1], [2].

これまでのところ火星の内部構造を制約している情 報は火星隕石から推定される化学組成と半径,質量, 慣性能率,地形,重力分布,ラブ数などの地球物理 学データである.火星はSNC隕石の情報を基にC1コ ンドライト物質(40%)とC1コンドライトから揮発性成 分が枯渇した非常に還元的な物質(60%)からなると考 えられている[3].その不揮発成分はC1コンドライト と同じであるため、火星のバルクのFe/Si比やFe重量 %はC1コンドライトと同じでそれぞれ1.71,27.4%で あることが帰結される.また火星隕石とC1コンドラ イトの組成比の比較から火星マントルはFeOに富み (Mg#=0.75),コアは Fe-Ni-FeSの合金であり火星質

- 3. 東京大学地震研究所
- kobayashi.naoki@jaxa.jp

量の22%を占めると推定されている(本稿ではこれを 「化学モデル」と呼ぶ).

一方,地球物理学的なパラメータは軌道衛星や着陸 機のドップラー観測,電波測距観測,レーザー高度計 のデータから求められている.火星内部の密度の分 布を表す最大主慣性能率Cは重力ポテンシャルJ₂と歳 差運動の観測から1%程度の精度で決められており[4], 地殻の平均厚Hはジオイドと地形の比から50±12 km (地殻密度2700-3100 kgm³を仮定)と推定されている [5].表1に火星の内部構造を決める際の制約条件とな っている主な地球物理学パラメータの観測値を挙げて おく.

火星の半径,質量を固定すると慣性能率は内部の密 度分布(コアの組成と半径,マントル組成と温度,地 殻の密度と厚み)によって決まる.火星がClコンドラ イト的な物質で作られているとすれば,それに基づい た火星内部構造モデルは慣性能率Cの観測値を誤差の 範囲で満たさなければならない.実際にそうした計算 を実施してみると Clコンドライトに基づいた「化学モ デル」は慣性能率の観測値と矛盾する[1].しかし軽元 素として水素がコアに含まれる場合,FeHはFeSに比 べ圧縮率が高いためHが 50 mol%ほどコアに混入すれ ば「化学モデル」でも慣性能率に矛盾しなくなるとい う見積もりもあり[6],コア組成を推定する際に鍵とな

^{1.} 独立行政法人宇宙航空研究開発機構宇宙科学研究本部

^{2.} 国立天文台

質量 M	$6.41850 \times 10^{23} \mathrm{kg}$
平均半径 R	3389.92 km
最大主慣性能率 C/MR ²	$0.3660 \pm 0.0012^{*1}$
ポテンシャルラブ数 k ₂	0.153 ± 0.017
平均地殼厚 H	$50 \pm 12 \text{ km}$
自転周期 Ω	$8.86427 \times 10^4 \mathrm{s}$

表1. 火星内部構造を制約する物理特性の観測値

科学情報		
コア半径, 地殻の厚さ, マントル不連続面, 地		
震活動, 地滑り活動, 火山活動, 隕石衝突頻度,		
大気脈動		
コア半径,地殻の厚さ,極冠の季節変化		
地温勾配、地殻の厚さ、火山活動		

実? 計測手注と得られる利学情報

るコア密度は火星の材料物質の議論においても重要で ある.

火星のコア-マントル境界での温度の推定値は1700 ~ 2000 Kであるが、Fe-Ni-FeS系の融点は1400 K程度 であるから完全融解したコアが期待されている[6]. ラ ブ数の観測からも半径1680±160 kmのコアの少なく とも上部は融解していると指摘されている[4]. また軽 元素量が多くなりコア半径が大きくなると高圧相であ るペロブスカイト層は存在しなくなる[6]. ペロブスカ イ層の存在はマントル対流にも影響を与えると考えら れているためコアの大きさの決定は熱進化を考える上 でも重要である.また、地殻の平均密度、平均厚は慣 性能率の値に影響するため、議論の精度を上げるため には地殻構造を正確に決める必要がある. 地殻の厚さ はマントルの部分溶融量を反映するが、地殻が多いほ ど放射性元素が地殻に濃集し逆にマントルの熱源を枯 渇させる.マントルの熱源が枯渇するとコアとマント ルの温度差が大きくなりコアからの熱流量を増やす効 果をもたらす、コアからの熱流量は火星のダイナモ作 用を議論する上でも重要である[2].

以上のようにコアの大きさと密度,地殻の厚さと密 度の決定は火星の内部構造の議論において鍵となって いる.最新の探査データを用いてもコアサイズの決定 には300 km程の不定性があり,許容されるモデルを 十分には制約できるものではない([4]の図2参照).こ

※1 文献[4]の値を平均半径Rで評価したもの.

れらの量を決定することは火星内部構造を理解する上 で鍵となる.

2. 内部構造探査

地殻の厚さやコアの大きさ,更に内部の不連続面の 同定といった内部構造の探査を1機もしくは2,3機の 少数の着陸機で行うには地震探査,火星回転,重力場 計測,熱流量計測などの多面的,包括的な情報収集が 不可欠である.また,MELOSのランダー単体では完 結せず,他のミッションとの連携や将来のミッション の礎となる探査としての位置付けという視点も必要で あろう.表2にランダー搭載機器候補として挙げられ ている地球物理学的測定機器とそれによって得られる 科学情報をまとめた.コア半径の決定は内部構造学と して最重要課題ではあるが,地殻の構造の決定に比べ より難易度が高い探査である.

(1) 地震計測

惑星の内部構造探査において潜在的に最も高い解 像度を持つのが地震探査である.しかし1点もしくは 2,3点の観測点で達成できる内部構造の情報は限られ る.そもそも火星に観測にかかる十分な地震活動があ るのかという疑問もある.Viking搭載の地震計の計測 は5ヶ月間の観測でランダーや風によるノイズの影響 が少ない640時間分の記録を採取した.その記録の内, 1例のみ火星地震と思われる記録を得たのみである[7]. その統計的な解釈から火星の地震活動は地球に比べて 86

低いと考えられている.

Mars Global Surveyorのレーザー高度計の記録か ら8500の断層地形を同定した研究では1年で3.4×10¹⁶ Nmから4.8×10¹⁸ Nmほどの地震モーメントの解放が 見積もられている[8]. 見積もりは断層の同定,火星の 冷却収縮過程や用いた種々の地震のスケーリング則に 依存する.上限値ではあるがマグニチュード4以上の 地震が年に572個生じている換算になる.最も断層が 集中しているTharsis地域で観測頻度が高いと考えら れる.他にもHellasの南部,Utopia Planitiaの北側で 頻度が高いと見積もられている.

マグニチュード4程度の地震が観測点から30度以内 に起ればP波,S波ともに十分なS/Nの記録が取れ[9], レシーバ関数法により地殻のS波構造を決定すること ができる[10].地震観測で地殻の厚さが何処か1点アン カーされれば,火星の重力場から地殻密度とマントル 密度を仮定すればグローバルに地殻厚のマッピングが 可能となる[5].3成分の広帯域の地震計測と精度の高 い重力計測によって地殻厚のグローバルマップが期待 される.

しかしマグニチュード4程度の地震はコアでの反射 波を捉えるにはやや小さい.実体波のコア表面での反 射波以外にも角次数が2から7の伸び縮み基本振動の固 有周期(>500秒)はコアの大きさに敏感な量である[6]. しかしコアサイズを決定するには火星のグローバルな 振動を励起しなければならない. 自由振動を十分な観 測レベルに励起するには少なくともマグニチュード 6.5以上の火星地震が必要である。これは多く見積も っても10年に1回程度と推定されており、1年程度の観 測期間では検出は難しい。 地震以外の自由振動の励起 源として大気擾乱による励起が提案されており、地球 で観測されている程度の常時自由振動が期待されてい る[11]*2. 条件が地球と同じであれば1年もあれば自由 振動が検出できる. 1点観測でコアサイズを決定する には常時自由振動に期待する他無いが、そのためには 地球上で最高性能の高感度、高帯域な地震計を火星に も設置する必要がある。

現在,我々はレーザー干渉計測技術を用いたフィー ドバック型地震センサーを開発している.目標感度と してはmHz帯の常時自由振動が検出できることであ る(目標感度:10⁻¹⁹m²s⁴/Hz).コアサイズの同定には この要求が必要となる.レーザー干渉型地震計の利点 は高感度・低ドリフトであり、その場でレーザー波長 を基準とした絶対校正がかけられることである.試作 機を用いた研究でこれらの利点が実証され、目標感度 も達成できる見込みが得られている.一方,惑星探査 のためにはレーザー光源や長周期振り子を,打ち上げ・ 着陸時の衝撃や温度変動に影響されにくい構造とする 必要がある.広帯域地震観測に必要な安定性が得られ る設置方法についても開発課題である.

(2)回転変動計測と重力場計測

回転変動計測と重力場計測は火星内部の情報を得る 手段として地震計測とともに有効な観測手法である. 地球や火星などの太陽系内の天体では自転速度の変 化や自転軸自体のゆらぎによる様々な回転変動(歳差, 章動,極運動や物理秤動(強制秤動)など)が存在する. 天体内の質量分布(重いコアの有無,コアの溶融など) や回転エネルギーの散逸メカニズムの違いによりその 振幅,周期が異なる.これらの変動の精密計測により 天体内部の情報を導くことができる.もし,地震学的 手法でコア半径が与えられるならば,回転変動の情報 と併せコア密度即ちコアの組成についても大きな制約 を与えうる.

過去のNASAの火星探査ミッションVikingやMars Pathfinderのランダー電波による位置計測は1 m程 の精度であった.内部構造,特にコアの情報を制限 するためには,より高精度の観測が必要である.そ こで我々は超長基線電波干渉計(Very Long Baseline Interferometry:VLBI)技術を火星の回転変動の計測 に応用する.VLBIは,天体や宇宙機の高精度位置計 測を目的として開発された技術であり,日本の月探査 計画「かぐや」では重力場計測の精度を上げる技術とし て月内部構造の解明に大いに貢献すると期待されて いる[12].今回は,同一ビームVLBI[13]に加えて,逆 VLBI [14]という新しい観測手法を導入する.

回転変動計測では複数着陸機を用いた逆 VLBI観測 が有効である.火星表面の2カ所以上に電波信号を発 するVLBI用電波源を搭載した着陸機を設置する.こ れらから送信される電波信号を地上局の一つの電波望 遠鏡で受信し,各電波源と地上局との間の距離差の変 化を高精度に計測する.なお,各電波源から送信され る信号は同期している必要があることから,火星周回 衛星に周波数安定度の高い発信器を搭載し基準信号を 火星表面の電波源に供給する.任意の 2つのランダー から送られてくる電波の位相差は火星から受信機まで の経路の影響をキャンセルし,2つのランダーと地球 間の距離の差ΔLを精密に計測できる.2つのランダ ーから受信機への距離の差ΔLは火星の回転運動によ って時々刻々変化する.各電波源と地上局の距離差の 計測精度としてはミリメータ(mm)からセンチメータ (cm)を目標としている.回転変動計測の質と量を向 上させるためには火星表面に電波源を効果的に多数配 置しネットワーク観測を行うことが重要であるので国 際協力の呼びかけも行っている.

重力場計測では、衛星と着陸機間での逆 VLBI観測 と同一ビーム VLBI観測の実施を検討している. 衛 星と着陸機間の逆 VLBI観測は先述の着陸機間の逆 VLBIを衛星と着陸機に置き換えた観測である. 同一 ビームVLBIは地上局から見て衛星と着陸機の距離が 近い場合に両者を同時に観測する形式の相対VLBI観 測である. 同一ビームVLBIでは、主要な誤差要因で ある大気や電離層内の伝搬遅延の変動や観測機器内の 局内遅延などを衛星と着陸機の間でほぼ完全に相殺す ることが可能となる. また, 従来の軌道決定に用いら れてきたレンジ, ドップラ計測では地上局から見た衛 星の方向(視線方向)への位置変化に感度を持つのに対 して, 同一ビームVLBI観測は視線垂直方向へ感度を 持つため, この手法を用いることでより高精度な位置 決定が可能となる.

これらのVLBI観測による衛星の高精度位置決定を 通して火星重力場とポテンシャルラブ数(k₂)の決定を 目的とする.これまでMars Global Surveyor, Mars Odysseyをはじめ歴代の火星探査ミッションにより詳 細な火星重力場モデルが発表されているが [15],コア のサイズの推定につながる重力場の低次項とk₂の推定 精度は未だ不十分である.特にk₂の値は,探査衛星や 解析手法によるばらつきが大きく,信頼度が低い[16]. 例えば歳差運動の決定精度が4倍になれば,仮定した コア組成に対して10 km精度でコア半径が決定できる [16]. 逆VLBI,同一ビームVLBIによる新たな観測量 は回転変動や重力場の観測精度を改善し,内部構造モ デルの精度を向上させるであろう.

3. 環境変動計測

地球物理学的な観測は内部構造以外にも現在の表層 環境の変動に関する情報をもたらす.地動を誘起する 原因には地表を削剥し新たな表面を露出させる現象が 多い.表面の更新は固体と大気との接触を通し両者の 間の物質の交換を増進する.感度の高い広帯域地震計 を設置すれば地震,地滑りなどの地表の更新作用を直 接捉えることができる.隕石衝突は外因的な表層の更 新作用である.それに伴う地殻物質の剥ぎ取りや周囲 への放出は内部物質と大気の接触を増進する.隕石衝 突も規模によって検出範囲は限定されるが,地震計測 によって現在の衝突頻度を推定でき,クレーター年代 学にも貢献できる.

回転変動計測は火星大気の理解においても重要であ る.火星の極にはCO₂の氷が存在し,夏には昇華,冬 には凝結という季節変化が起きる[4].これは大気と火 星との間の質量交換と角運動量輸送を誘起し,自転速 度変化や極運動を生じさせる.逆VLBI観測を1火星 年(地球のおよそ2年)以上行い極冠の昇華・凝結に伴 う回転変動の検出を行う.これによりCO₂の昇華・凝 結量を推定できれば火星大気循環のダイナミクスの理 解の一助となる.

従来の火星像では「地球と比べてより進化の進んだ. 活動を停止しかけている天体」とみられていたが、近 年の探査は現在も活動を続けている活発な惑星である ことを明らかにした. その代表例が若い火山活動であ る. クレーター年代学で「ほぼ現在」と同定される若 い. 流動性に富んだ溶岩流(高温を示唆する)が多くの 地域で見つかっており、地球とは異なった様式のマグ マ活動ではないかと関心を集めている。 地震波速度 探査・電磁気探査によるマグマ源・アセノスフェアの同 定が探査目標となる地点で高い熱流量が想定される. 1000 kmにも及ぶ長大な割れ目噴火と考えられている Cerberus FossaeやTharsis火山周辺域の割れ目噴火地 帯, 巨大火山の山頂部のカルデラなどが着陸探査地点 として考えられる。地震,回転運動,熱流量,電磁気 観測によって活きた火星の活動が捉えられれば我々の 火星像をより豊かなものとしてくれるであろう.

4. 謝辞

並木則行氏には本稿を丁寧に査読していただき有益 なコメントを沢山いただいた.また火星探査のワーキ ンググループにおける多くの方々との議論が本稿の下 敷きとなっている.深く感謝の意を申し上げる.

参考文献

- [1] Bertka, C. M. and Fei, Y., 1998, Science 281, 1838.
- [2] Nimmo, F. and Stevenson, D. J., 2000, J. Geophys. Res. 11, 969.
- [3] Dreibus, G. and Wanke, H., 1985, Meteoritics 20, 367.
- [4] Yoder, C. F. et al., 2003, Science 300, 299.
- [5] Wieczorek, M. A. and Zuber, M. T., 2004, J. Geophys. Res., 109, E01009.
- [6] Gudkova, T. V. and Zharkov, V. N., 2004, PEPI, 142, 1.
- [7] Anderson, D. L. et al., 1977, J. Geophys. Res. 82, 4524.
- [8] Knapmeyer, M. et al., 2006, J. Geophys. Res., 111, E11006.
- [9] Mocquet, A., 1999, Planet and Space Sci., 47, 397.
- [10] Svenningsen, L. and Jacobsen, B. H., 2007, Geophys. J. Int., 170, 1089.
- [11] Kobayashi, N. and Nishida, K., 1998, Nature 395, 357.
- [12] Kikuchi, F. et al., 2009, Radio Science, 44, doi:10.1029/2008RS003997.
- [13] Liu, Q. et al., 2007, Advances in Space Res., 40, 51.
- [14] Kawano, N. et al., 1999, J. geodetic soc. Japan, 45, 181.
- [15] Konopliv, A. et al, 2006, Icarus, 182, 23.
- [16] Dehant, V. et al., 2009, Planet. Space Sci., in press.