特集「かぐや」が見た新 "月世界" 「かぐや」が見た新 "月世界"

岡田 達明1

(**要旨**) 日本初の月周回探査機「かぐや」が打ち上げられ、ほぼ順調に観測を続けている。その科学初期成果のいくつかをトピックスとして紹介する特集を組み、今号と次号とに分けて掲載する。日本発のデータによる月科学研究の推進に貢献できれば、また惑星探査という手法により一層の強い関心を抱いて頂ければ幸いである。

1. 「かぐや」月に行く!

2007年9月14日10時31分01秒(日本標準時間), 月周 回衛星「かぐや」を搭載したH-2Aロケットは種子島 宇宙センターから打ち上げられ、真っ直に伸びた噴 煙の先端を突き進み、地球大気圏から離脱し、「かぐ や | を分離した。「かぐや | は計画当初は数日で月に 到着する予定であったが、確実を期すために軌道調整 しながら月に向うことになった。10月4日に月に到着 して長楕円軌道(高度100km×1.2万km)に入り、遠月 点高度を下げつつ子衛星「おきな」、「おうな」を分離 し、10月19日に観測軌道である高度100kmの極周回軌 道に投入された. その後, 長さ12mの磁場観測用マス ト 先端間距離30mの電波観測用アンテナ2対を伸展 させ、月の探査を行う準備がほぼ整った、バス機器や 観測機器の動作確認やパラメータ調整を経て、12月半 ばより定常観測フェーズに入った. 若干の不具合はあ るものの、ほぼ順調に観測を続けている.

2 新"月探査時代"の幕開け

「かぐや」の目標は月科学と将来の月利用のための調査である[1]. 月科学とは、月の起源と進化を解明するための情報を取得するいわゆる「月の科学」、月で起きる諸現象や環境の解明を目指す「月での科学」、月周回軌道を好条件の観測点として利用する「月からの科学」を含む、観測データの一部は科学だけでなく、

1. 宇宙航空研究開発機構宇宙科学研究本部

将来の月探査を検討するための資料や,教育啓蒙活動にも使用される。また,「かぐや」実現にむけて開発・ 実証された技術の幾つかは,「かぐや」のみならず将 来の月惑星探査の共通技術としても価値が高い.

「かぐや」は元来SELENE(SELenological and E-Ngineering Explorer)と呼ばれていた。文字通り,月科学と月探査技術開発のための探査機である。日本で月周回軌道に投入されたのは工学実験衛星「ひてん」とその子衛星「はごろも」以来だが,科学探査機としては初である。また多数の高性能な観測機器を用いて月探査を行う本格的な月ミッションは世界的にもアポロ計画以来であり,かつ全球探査となれば史上初である。

「かぐや」に続いて中国の国家的月探査プロジェクト「嫦娥(じょうが=月の女神)1号」[2]が同年10月24日に打ち上げられ、ほぼ順調に観測を続けている。2008年末にはインドが月周回衛星と降下プローブをもつ「チャンドラヤーン(=月の宇宙船)1号」[3]を打ち上げる。米国も2009年初頭には超高解像度撮像と環境計測、氷探査を行う月周回衛星「ルナー・リコナイサンス・オービタ(LRO: Lunar Reconnaissance Orbiter)」と月面に衝突させて揮発性物質を調べる「エルクロス(LCROSS: Lunar Crater Observation and Sensing Satellite)」を同時に打ち上げる[4]。さらに月重力場の超高精度探査を行う「グレイル(GRAIL: Gravity Recovery and Interior Laboratory)」が2011年に計画されている[5]。その後も世界中で月周回衛星や月着陸機が検討され、国際月ネットワーク探査

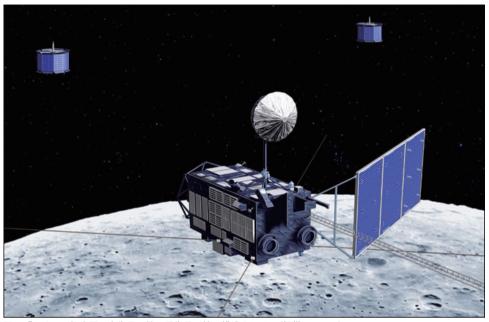


図1:「かぐや」概念図、主衛星 1 機、子衛星 2 機で構成される。(提供: JAXA)

(ILN: International Lunar Network)の構想も進められている。まさに月探査ラッシュの時代が始まった。「かぐや」はその先駆的立場であると同時に、観測機器数・性能ともに最高レベルである。

3. 搭載機器と科学目標

「かぐや」には14観測機器(15種類の実験項目)が搭載されている。各実験項目の特徴を表1にまとめた。ホームページ[6]にも詳しく紹介されているので詳細な説明は割愛する。

「月の科学」として、月の起源や内部構造、マグマの海の進化過程と地殻形成、火山活動とテクトニクス、表裏の二分性、等の成因と進化過程を知ることが重要である。これらにリモートセンシングで貢献できる情報は、地殻の多様性を知るための表層物質分布、熱史やテクトニクスを議論できる精度での地形や重力場・磁場分布、溶岩流の量を推定する地下構造と組成等である。

「月での科学」として、プラズマ物理現象の振る舞いの違いを惑星間で比較することが重要である。地球は磁場・大気がともにある天体、ベピコロンボ(2013年打ち上げ予定)の向かう水星は磁場は有るが大気は

無い天体、月は磁場・大気ともに無い天体であり、月での観測は比較対象として重要な位置を占める。

「かぐや」搭載機器はこれらの科学目標を踏まえ、 観測種別や観測性能について検討された、大まかな分類では、(1)月表層物質の元素・鉱物組成とその分布調査、(2)表面および表層下の地形と構造の探査、(3)月の裏側を含む重力場詳細探査と内部深部構造への制約、(4)月周辺プラズマ環境と物理現象の解明、(5)地球上層大気の全域撮像や惑星電波の月からの観測、(6)宇宙からみた地球の姿、月の大地を高画質で放送、で構成される.

4. 最新の科学トピックス紹介

今号と次号の特集では「かぐや」によって得られた 成果のうち最新のトピックスの幾つかを紹介する.

「かぐや」による高分解能観測の象徴のひとつが、 ガンマ線分光計による元素組成探査である。ゲルマニ ウム検出器の使用により過去に比べてエネルギー分解 能が数10倍優れている。唐牛他[7]ではトリウム全球分 布が紹介されている。解析が進めば精度や空間分解能 が向上し、さらに主要元素の分布まで得られると期待 される。

レーザ高度計による月高度分布は、クレメンタイン

XIII TI III TI I			
観測目標	観測実験項目	略称	機器内容
月表層物質の元	蛍光X線分光計	XRS	CCDによる高分解能な主要元素 (Mg, Al, Si, Ca, Ti, Fe)分布
素・鉱物組成の	ガンマ線分光計	GRS	Ge検出器による高分解能な主要元素・放射性元素・揮発性元素分布
全球分布	マルチバンドイメージャ	MI	可視~近赤外域の9波長帯での同時分光撮像. 40m解像度(可視).
	スペクトルプロファイラ	SP	0.5~2.6 µ mでの連続分光による主要鉱物種の推定と分布
高解像度表面地	地形カメラ	TC	解像度10mでの斜方視撮像によるデジタル3D地形の全球測定
形・表層下構造	月レーダサウンダ―	LRS	5MHz付近の電波エコー観測で地下構造を探査. 自然電波も観測.
の探査	レーザ高度計	LALT	1秒周期でレーザー (1064nm)を放ち、全球高度分布を詳細に決定
月周辺のプラズ	月磁場観測装置	LMAG	12mマスト先端に搭載した磁力計で残留磁気,太陽風磁場の測定
マ環境および物	プラズマ観測装置	PACE	イオン, 電子のエネルギーを4π視野観測. 月面側イオンの質量分析.
理現象の解明	粒子線計測器	CPS	月α線の測定, 月周辺の高エネルギー粒子計測
	電波科学	RS	子衛星の電波源を用いた月上層電離層有無を調べる掩蔽観測
地球周辺環境	プラズマイメージャ	UPI	地球周辺プラズマ環境の全貌を可視・極端紫外で撮像
裏側を含む全球	リレー衛星中継器	RSAT	主衛星が月裏側にいる際に4wayドップラー観測で裏側重力場を決定
詳細重力計測	衛星電波源	VRAD	2機の子衛星の電波源で地上局と△VLBIを実施し、軌道を精密決定
教育啓蒙活動	高精細映像取得システム	HDTV	広角・望遠の2種類の斜方視用ハイビジョンカメラで映像取得

表1:「かぐや」搭載の観測実験項目の一覧

衛星のレーザ高度計とモザイク画像から得られた地形図(ULCN2005)を観測点数、観測カバレッジ、観測精度の全てにおいて凌駕しており、初めて月の熱史やテクトニクスを定量的に扱える地形図を手にした。荒木他[8]では最初期の版が紹介されている。観測はその後も継続しており、さらに主衛星の軌道決定精度も向上することから、今後も一層の精度向上が期待される。

月は太陽風中に置かれるとき、太陽風の速度に比べて電子の熱速度は速いがイオンの熱速度が遅いため夜側にイオンが十分に回りこめず、イオンに欠乏する領域(ウェイク)が生じるが、そこで予想外のイオン加速現象がみられた様子を西野他[9]が紹介している。

次号では、月面の分光撮像から得られた新たな知見、 史上初の月裏側の重力測定とその結果得られる地下構造の特徴について推定など、最新トピックスが紹介されるので、そちらも乞うご期待.

参考文献

- [1] Kato, M. et al., (2008), Adv. Space Res., 42, 294.
- [2] Sun, H. et al., (2005), J. Earth Sys. Sci., 114, 789.
- [3] Bhandari, N. (2005), J. Earth Sys. Sci., 114, 701.
- [4] http://lro.gsfc.nasa.gov/
- [5] Zuber, M., et al., (2008), LPSC XXXIX, 1074.
- [6] http://www.kaguya.jaxa.jp/
- [7] 唐牛 譲他, 2008, 遊星人 本号.
- [8] 荒木博志 他, 2008, 遊星人 本号.
- [9] 西野真木 他, 2008, 遊星人 本号.