

渡部直樹1, 香内 晃1, 白木隆裕1, 長岡明宏1, 日高 宏1

1. はじめに

星の無い分子雲中心部では星間塵の温度は10K 程度 にまで下がる.このような極低温にもかかわらず,星 間塵上では活発な化学反応により簡単な分子がより複 雑な分子へと進化している(分子進化).星間塵は微 惑星さらに惑星のもとになった始原物質であり,星間 塵上での分子進化は惑星系の進化を決める極めて重要 なステップである.しかし,その詳細は依然として未 解明な部分が多い.我々のグループでは星間塵表面反 応による分子進化の全容解明をめざし,極低温星間塵 表面反応のシミュレーション実験を精力的に進めてい る.本稿では,星間塵上における有機分子の生成過程 およびその重水素濃集機構について最近得られた実験 結果を中心に紹介する.

2. 分子雲における分子進化

有機物など主として軽元素からなる分子の進化を考 えるとき、初めてそれが活発になるのは分子雲の段階 である.分子雲は星間塵と原子(イオン)からなる希 薄なガス雲が収縮してできる.水素などの簡単な分子 は収縮の過程で生成され始めるが、有機物などのより 複雑な分子が生成し、その後の解離を免れるためには、 外部の星からの強い紫外線を遮るだけの星間塵と分子 の密度が必要になる.分子雲で分子進化が活発になる のは、このような密度の高さに加えて適度な強度の紫 外線が存在するためである.ちなみに密度の高い分子 雲中心部における分子数密度は10³-10⁵/cm²程度で、星

1. 北海道大学低温科学研究所

間塵の数密度は分子数密度のざっと10-12倍である.

分子雲における分子進化は、主として活性化エネル ギーを必要としない気相におけるイオン-分子反応によっ て進むと考えられてきた、実際、実験ではこれら気相 反応の断面積測定、理論では天文観測と膨大な数の基 礎データを取り入れた気相化学反応ネットワーク計算 を主とした研究が行われ、一定の成果を挙げてきた. しかし、分子雲中で圧倒的な存在度を占める水素分子 の生成や,近年の赤外線観測[1]で星間塵表面に存在 が確認された水、二酸化炭素、ホルムアルデヒド (H₂CO) やメタノール (CH₃OH) 分子等の生成をイオ ン-分子反応では説明することはできなかった、これら の分子の生成には星間塵上での表面反応が不可欠であ ることは以前から指摘されていた。表面反応は気相反 応と異なり、余分な反応熱を分子の再解離に使うこと なく塵表面に逃がすことが出来るので、気相では起こ りえない反応も表面では容易に進む場合がある.また, 星間塵は10K 程の低温であるため、表面に様々な分子 が蓄積するので、より複雑な有機分子を生成する場と しても好都合である.こうした背景から、1980年代か ら星間塵表面での分子進化が重要視され始めた.

2.1 これまでの星間塵表面反応の研究

星間塵表面反応の理論的研究は、塵表面における水 素分子生成率のモデル計算に集中している[2].近年 になって H₂CO や CH₃OH の生成を扱った計算が出始 めてきた[3].しかし、いずれも表面状態や反応の活 性化エネルギーの値を適当に仮定しているため不確定 性を避けることができない.実際の星間塵表面は凹凸

真空中で疑似星間塵表面作製

図1:典型的な光化学,イオン誘起反応実験の概念図.多成分の氷からどんな分子が生成されるかを中心に調べられてきた.

の激しいアモルファス構造をとっていると考えられる. さらに、水素原子などは質量が軽いために、極低温に もかかわらず、トンネル効果によって高い活性化エネ ルギーをもつ反応でさえ起こり得る.このような理由 から星間塵表面反応に関する理論的な研究は容易でな く、実験的研究の重要性が大きくなる.

一方,実験的研究ではライデン大の Greenberg 教授 が始めた光化学反応のシミュレーション実験は広く関 連業界の研究者に知られている[4].そのためか,星 間塵表面における分子進化はかなり解明されていると 思っている研究者も少なくない.確かに彼らの一連の 実験は「多成分からなる星間塵マントルに紫外線など の反応トリガーが入射した場合,どんな分子が生成さ れるか」を知る上で重要な情報を与えてくれる.しか し,実験のほとんどは非常に定性的で,多種の分子混 合物を用いた実験のため,反応速度や反応経路といっ た反応素過程に関する情報は得られていない.これは ほぼ同時期に始められた NASA[5]やイタリア[6]のグ ループの実験にも共通している.参考のため図1に典 型的な実験手順を模式的に示した.これまでの実験的 研究の問題点を簡単にまとめると,以下のようになる.

・試料が多成分で、その上データの数が少ないため、
 反応経路、反応速度等の素過程の情報が得られない。

・光化学反応の実験では光量の測定がしっかり行われていないため、実際の分子雲環境に焼き直すことができない。

・放射場の弱い分子雲中心部で重要になる水素原子が

絡む反応実験はほとんど行われていない. 新たに実験を行う場合には、上記の問題点に注意する

新にに実験を打つ場合には、上記の同題点に注意する 必要がある。

3. 星間塵表面での H₂ CO および CH₃ OH の生成

Molecules	W33A	NGC7538	Halley	Hyakutake	Hale-Bopp
H₂O	100	100	100	100	100
со	9	16	15	6-30	20
CO ₂	14	20	3	2-4	6-20
CH₃OH	22	5	1-1.7	2	2
H ₂ CO	1.7-7	5	0-5	0.2-1	1

表1:分子雲中の星間塵マントルおよび彗星コマの観測 (ref.[1]より)

表1に分子雲中の星間塵上(固体)および彗星コマ 中(気相)に観測された主要な分子種を示す.固相と 気相で観測されたものを必ずしも等価に見なすことは できないが,非常によい一致を見せている.よく知ら れているように,この観測事実から彗星は星間塵の集 合体であると考えられている.つまり星間塵上での分 子生成を調べることは,分子雲における分子進化のみ ならず,彗星の起源を明らかにする上でも重要である. 表中でもっとも存在度が高いのはH₂Oで,CO,CO₂ 等がそれに続く.これらの分子種のうち,気相におけ る生成とその後の吸着で存在度が説明できるものは, 分子雲初期に気相反応で容易に生成される CO だけで ある.その他の分子生成には表面反応が不可欠である と考えられている.

ここで特徴的なのは CO₂を始めとして CO を含む 分子が多いことである.特に簡単な有機分子である H₂CO, CH₃OH は水分子に対して数%~30%程度の 高い存在量を占める.CO 分子が気相で生成し星間塵 に吸着したのであれば,それを含む CO₂,H₂CO, CH₃OH は塵表面で CO から進化したと考えることは 自然である.実際,CO₂は CO 分子を含む H₂O 氷の 紫外線による光化学反応で効率よく生成される.一方, 光化学反応による H₂CO,CH₃OH の生成量は少ない うえ[7],放射場の弱い分子雲中心部では水素原子の フラックスは紫外線のフラックスよりも大きいと見積 もられる.そのため,H₂CO,CH₃OH の生成プロセ スとして CO 分子への水素原子逐次付加反応,

$CO - HCO - H_2CO - H_3O(CH_2OH) + CH_3OH (1)$

(k。は反応速度定数)が注目されてきた. このプロセ スは理論的には盛んに議論されてきた.しかし、HCO、 CH₃O を生成する反応の活性化エネルギーは星間塵表 面温度(~10K)よりも二桁程度大きいと見積もられ たこと[8], さらに1994年に報告された Hiraoka らの実 験[9]でも否定的な結果が示されていたために、「星間 塵上での CO への水素原子付加反応は非常に遅い」と いう認識が受け入れられてきた.そのため、H₂CO、 CH₃OH 生成機構は長い間解明されずに放置されたま まであった.しかし,前述したように10Kの低温では トンネル反応が期待される上, Hiraoka らの実験には種々 の問題点があったので、この認識を再検討する必要が ある.彼らの実験は昇温脱離法を用いているために10 Kで生成された分子種と昇温中に生成された分子種を 区別できないこと、原子照射後の最終生成物の量しか 測定していないこと、水素原子の照射量が不明である こと、などの問題があった. 水素原子照射量を見積も

ることは、実際の分子雲で有意なプロセスであるかど うかを考察する際に不可欠である.さらに、反応速度 等を求める際には、最終的な生成量だけでなく、生成 量の水素原子照射量依存性を測定する必要がある.

4. 星間分子の重水素濃集

この章では最近の観測で次々に明らかになってきた、 星間分子の重水素濃集について触れておきたい. 星間 分子の重水素体(分子中の水素が重水素に置換された もの)は、これまでに20種以上が気相で見つかってい る[10]. その中で特に注目したいのは, NH₃, H₂CO, CH₃OH 等,星間塵表面反応により生成したと考えら れる分子種が含まれていることである、そこで分子雲 および彗星で観測された H₂CO.CH₃OH における D/H 比 (H_2 CO - d_n/H_2 CO および CH₃OH - d_n/CH_3 OH) を 表2にまとめた. 宇宙存在度から推定した D/H 比が 10-5であることを考えると、異常とも言える高度の重 水素濃集である.この濃集機構については多くの理論 的研究がなされてきた、ほとんどのモデルは気相にお けるH₃⁺の重水素化とそれに続くイオン分子反応で H₂CO と CH₃OH の重水素濃集を説明しようとしてい るが、必ずしもうまくいっていない[11]、特に複数の 重水素原子を含む分子 (D₂CO, CD₃OH など)の生成 については説明が困難である.

	HDCO	D_2CO	CH ₂ DOH	CHD20H	CH₃OD	CD₃OH
分子雲*	0.14	0.1	0.3	0.06	0.02	0.01
彗 星**	<0.05		<0.008		<0.03	

*IRAS16293. ref. [18], **ref. [19]

表2:分子雲,彗星の気相における星間分子重水素体の存在 度(対水素体)

H₂CO, CH₃OH が星間塵上で生成されるならば, その重水素体もまた星間塵上で生成されると考えるの は自然なアプローチである.実際,星間塵表面におけ る重水素濃集に着目したモデルもいくつか提唱されて いる[12].しかし,これらのモデルでは実験データの 不足から、反応速度定数や活性化エネルギーをすべて の水素・重水素反応系で一定にする等の現実的ではな い仮定がなされている.これらの物理定数は反応の有 無を左右する決定的に重要な意味を持ち、そこに大き な仮定を置いたモデルはあまり信頼できない.また、 表面反応として付加反応(CO+D DCO, DCO+D

D₂CO等)しか取り入れていないのもこれらのモ デルの弱点である.一方,星間分子の重水素濃集に着 目した表面反応実験は現在までのところ皆無である.

5. シミュレーション実験

我々は次の2点を目的に水素および重水素原子照射 実験を行った.

- H₂CO および CH₃OH の生成機構として反応(1)が有 効であるか、有効であるならば、反応の表面温度、 表面組成依存性を調べる.
- ・星間 CH₃OH 分子の重水素異常濃集が表面反応によっ て実現できるかどうかを調べる.

この実験を行うにあたり, 我々は LASSIE (LAboratory Setup for Surface reactions in Interstellar Environments) と ASURA (Apparatus for SUrface Reaction in Astrophysics) と名付けた2つの同タイプの装置を開 発した.装置の詳細は文献[13-16]に譲り、ここでは 概略を紹介するだけにとどめる(図2).実験装置は 水素 H (重水素 D) 原子を生成する原子線源チャンバー と試料にプロセスを与える主チャンバーの2つからな リ、ターボ分子ポンプによってそれぞれ10^{-®}Torr お よび10⁻¹⁰Torr まで真空に引かれている. 試料は10K 程 度に冷却したアルミニウムの鏡面基板上に蒸着して作 製する.そこに赤外線を入・反射させフーリエ変換型 赤外分光計 (FTIR) により試料の吸収スペクトルを その場観測する.H.D原子はマイクロ波放電で H_2 , D2分子を解離させることよって生成する. それらの 原子を冷凍機で冷やしたテフロンチューブ内を通すこ とによって30K 程度まで冷却し、そののち試料表面に 入射する. 原子照射にともなう試料組成の変化を

FTIR で測定し、表面から脱離する分子があれば四重 極質量分析器で検出する。

図2:本研究の実験装置概略

6. 実験結果および議論

6.1 H₂CO, CH₃OH の生成

図3に初期試料(H₂O/CO~4の混合氷)の赤外吸 収スペクトル、およびそこへ Η 原子を照射したとき のスペクトルの変化を示した. CO の減少とともに H₂CO,CH₃OH が生成されていることが分かる.この 変化はH2ガスを照射したときには現れない. つまり, H₂CO, CH₃OH は H₂との反応ではなく, H 原子逐次 付加反応(1)で生成していることになる. また CO を含 まないH₂O氷にH原子を照射(ブランクテスト)し たときにも H₂CO, CH₃OH は検出されない. このこ とからこれらの分子は原子源のマイクロ波プラズマ中 の残留ガスなどから生成されたのではなく、表面にお いて CO と反応したことにより生成されたものと断定 できる. 前述した通り,反応(1)における HCO, CH₃O 生成の活性化エネルギーは2000K 程度と見積もられて いるので、10K 程度での H₂CO, CH₃OH 生成はトン ネル反応によるものと考えられる1. なお、原子照射 中に気相に脱離してくる分子は検出されず、ほとんど の分子は反応後も表面に残ることが分かった[13-15].

図3を詳しく見るとH₂CO, CH₃OH 生成において 中間体である HCO および CH₃O が検出されていない ことが分かる.つまり HCO および CH₃O の生成過程 が逐次付加反応(1)の律速過程で,反応速度定数に関し

水素原子などの軽い粒子は極低温下で波動の性質が顕著になる(ド・ブローイ波長が長くなる).この性質のため、2000K程もある活性 化バリアの壁をすり抜けることができたものと考えられる.一般に化学反応は温度が高いほど進みやすい.光などのエネルギーを与えずに、 極低温下の氷表面でこれだけ反応が進むのは極端環境下の特異な現象で非常に興味深い

図3:上:原子照射前のCO-H₂O 混合(アモルファス)氷の 赤外吸収スペクトル. 温度10K,H₂O/CO~4.下: H原子照射にともなうスペクトルの変化.ベースライ ンより上方のビークは初期値から増加,下方は減少を 意味する.COの減少とともにH₂COが増加し,その 後CH₃OHへと移り変わっている様子が見て取れる.

波長(um)

ては k1<<k2, k3<<k4であると言える. 図3のスペク トルの変化から CO, H₂CO, CH₃OH 量の増減を計 算し図4にプロットした.後で詳しく述べるが, H₂CO, CH₃OH の生成量は分子雲の観測と良く一致 しており、逐次反応(1)が分子雲環境でも速やかに進む ことが明らかになった.これらの分子数の変化は厳密 には3つの物理素過程, すなわち原子の吸着・拡散・ 衝突反応 (反応速度定数)の情報を含んでいる.本稿 では詳しく述べないが、図4の各曲線を詳細に解析す ることにより水素原子の試料表面における拡散は極め て速いことが分かった. つまり観測された分子数の変 化は主として原子の表面への吸着係数と表面における 反応速度定数を反映している.原子照射初期の傾きか ら個々の反応速度に関する情報が得られる.まず CO の減少に着目する.10~15Kではほとんど反応速度が 変化しておらず、20Kで急激に遅くなる.15K以下で

図4:H 原子照射にともなう各温度における CO, H₂CO, CH₃OH の柱密度の変化. それぞれ初期 CO 量で規格 化してある.

反応速度が一定なのは、CO HCOの反応速度定数 が温度に依存しないトンネル反応の特徴を表している と考えられる.また、20Kでの落ち込みは反応速度定 数の減少というよりも、H原子の氷表面に対する吸着 係数がこの温度で急激に落ち込むためと見るべきであ ろう.次にH₂COからCH₃OHへの変化を見てみる. こちらは10Kよりも15Kで反応が速くなっている.こ れはH₂CO CH₃OHの反応が10~15Kでアレニウス 型からトンネル反応への遷移点にあるために、より高 い温度で反応速度定数が大きくなっているためと解釈 することが出来る. 次に初期試料が純 CO 固体の場合についても実験を 行った[16]. ここでは結果を詳しく述べないが,純 CO 固体と CO-H₂O 混合氷の実験結果を比較すること により,以下のことが分かった.

- ・純 CO 固体でも逐次反応(1)は良く進むが,温度が15 K以上になると急激に遅くなる.
- H₂O 分子は逐次反応(1)において、反応を促進する
 触媒的な働きを示す。

6.2 CH₃OHの重水素濃集機構

星間塵表面における CH₃OH の重水素濃集過程とし て,以下の2通りの場合を考えた.いずれも熱化学的 には発熱反応と見積もられ,進む可能性の有るプロセ スである.

- (i) CO 分子に D 原子が逐次付加する.
- (ii) CH₃OHとD原子が反応し、HとDが置換される.

我々はまず (i) を調べるため, 純 CO 固体および CO-H₂O 混合氷に D 原子を照射する実験を行った[17]. その結果,いずれの組成でも D 原子の付加反応速度 は H 原子の 1 / 5 以下となり, 重水素濃集は起こり 得ないことが分かった.これは逐次反応(1)がトンネル 反応で進むことを考えると、予想された結果であった (D原子はH原子より重く、トンネル反応は起こりに くくなる).次に(ii)の過程だが、これについては現 在実験を行っている.実験手順は次の通りである. CH₃OH 固体に D 原子を照射し, CH₃OH -d_nの生成 の有無を確認する(H体からD体への変化).もし生 成が確認されたら、次は逆に CH₃OH-d₀固体にH原 子を照射する実験を行う(なぜなら,たとえ重水素体 が生成されたとしても、再びH原子と反応を起こし て CH₃OH に戻ってしまっては重水素濃集には至らな いからである). 結果についてはまだ詳細を述べる段 階ではないが、非常に良いデータが得られつつある. このような星間塵表面反応による重水素濃集機構は, これまで全く議論されたことがなく、今後様々な系で 実験を行い新たな濃集機構として検討する必要がある.

7. 分子雲への適応

ー連の実験結果を分子雲環境に焼き直す前に,実験 条件と分子雲環境の違いについて考えてみる.もっと も異なるのは原子のフラックスである.冷たい分子雲 コアではH原子のフラックスはおよそ10⁵/cd²/s である のに対して,実験では10¹⁴~10¹⁵/cd²/s と十桁程大きい. フラックスの大きさが与える影響として「高フラック スによる表面の加熱(吸着熱,反応熱)」および「2 つの原子が一度に相互作用する可能性」の2つがあげ られる.前者については基板温度に変化がないこと, 揮発性分子の蒸発や構造変化がほとんど観測されない ことから,それほど重要ではないと見ている.後者の 意味するところは表面上でH+H+COといった3 体反応が起きないかと言うことだが,実験のフラック スであっても3体反応を起こすには十分ではなく², H+COの2体の反応であると考えてよい.

図 5 に実験結果の CO/ CH₃OH, H₂CO / CH₃OH と 観測値を示す.プロットした実験値は,分子雲の H 原子数密度を 1 H/cm²とした時10⁴,10⁵,10⁶年間に受 ける総原子数 (H/cm²) と同等の照射量の時のデータで ある.実験値と観測値の対応は良く,氷星間塵の温度 と水素原子のフラックスの双方が,H₂CO や CH₃OH の存在度を決める上で重要な因子になっていることが 分かる.10K 程度の温度で水素原子密度の薄い分子雲 中では CH₃OH への進化が抑制される.15Kくらいに なると CH₃OH 生成が顕著になる.さらに20Kになる と水素原子の氷への吸着係数は落ちるが,水素原子量 が多くなれば H₂CO の生成量が大きくなる.

実際の星間塵表面では他の競合する反応(光化学反応等)があるため,詳細な議論をするにはさらなるデータの蓄積が必要である.しかし,これまで未知であったH₂CO,CH₃OH生成過程として,紫外線や宇宙線が関わらない星間塵表面反応が非常に重要であることが本研究により初めて実験的に明らかにすることができた.

^{2.} 厳密な議論はここでは避け、次のように考える. Hと CO が衝突すると分子の振動周期10⁻¹²sのオーダーの間に HCO として安定化してしまう(ラジカルではあるが、単独では安定して存在できる). したがってこの間に3体目の H 衝突がなければ、逐次 2 体反応と考えて良い.この条件を満たすためには H 原子面数密度としてほぼ10¹⁵ /cm³が必要になるが、これはすべてのサイトが H 原子で満たされている状態を意味し現実的には起こりえない.

図5:実験結果と観測の比較 中空の記号は純CO固体(膜厚1,10ML),黒の記号は CO-H₂O混合氷(膜厚5,30ML)の実験結果.実験にお ける水素原子照射量は、左から順に分子雲で0.1,1,10 H/cm⁰の環境で10[°]yr間曝露された照射量に対応する. +は分子雲,×は彗星の観測値.(ref.[16]より転載)

8. 今後の展開

星間塵表面反応の定量的実験は世界的に見てまだま だ少ない.氷星間塵に含まれる主要な分子のうち,生成 機構がある程度わかったのは,CO,H₂CO,CH₃OHだ けである.最も大量に存在するH₂Oでさえ生成機構は 依然として不明である.今後は反応系を特定した光化学 反応実験や,H以外の原子(C,O,N)が絡んだ反応 実験を推進していく必要がある.このような定量的実験 を系統的に行うことにより,分子雲における気相のみな らず星間塵表面(固相)をも含んだ,包括的な分子進 化像が描けるようになるであろう.また,星間分子の重 水素濃集機構として星間塵表面反応を考慮する必要が あるだろう.NH₃,H₂CO,CH₄,H₂Oなどの分子に関 しても同様の濃集過程を調べる予定である.

9. 謝辞

本稿に対し的確なコメントを頂いた匿名査読者の方

に感謝致します.

参考文献

- Ehrenfreund, P. & Charnley, S. B., 2000, Annu. Rev. Astron. Astrophys., 38, 427
- [2] Hollenbach, D. & Salpeter, E. E., 1971, Astrophys. J., 163, 155
- [3] Hasegawa, T. I. et al., 1992, Astrophys. J. Suppl. Ser., 82, 167
- [4] 代表的には d'Hendecourt, L. B. et al., 1986, Astron. Astrophys., 158, 119
- [5] たとえば Allamandola, L. J. et al., 1988, Icarus, 76, 225
- [6] たとえば Strazzulla, G. & Baratta, G. A., 1992, Astron. Astrophys., 266, 434
- [7] Schutte, W.A. et al., 1996, Astron. Astrophys., 309, 633
- [8] Woon, D. E., 2002, Astrophys. J., 569, 541
- [9] Hiraoka, K. et al., 1994, Chem. Phys. Lett., 229, 408
- [10] Millar, T. J., 2002, Planet. Space. Sci., 50, 1189
- [11] Roberts, H. & Millar, T. J., 2000, Astron. Astrophys., 364, 780
- [12] Charnley, S. B. et al., 1997, Astrophys. J., 482, L203
- [13] Watanabe, N. & Kouchi, A., 2002, Astrophys.J., 571, L173
- [14] Watanabe, N. et al., 2003, Astrophys. J., 588, L121
- [15] 渡部他, 2004, 天文月報 v97, 101
- [16] Watanabe, N. et al., Astrophys. J., 616, 638
- [17] Hidaka et al., 2004 in preparation
- [18] Paris, B. et al., 2004, Astron, Astrophys., 416, 159
- [19] Crovisier, J. et al., 2004, Astron. Astrophys.418, 1141