陸上鉱山深部熱水系のアミノ酸と その立体化学的特徴からみた地下生命圏 高野 淑識¹,丸茂 克美¹,枝澤 野衣²,小林 憲正²

1. はじめに

我々の居住する地球表層では,多種多様な生命活動 が育まれている.まず、地球表層から鉛直上向きに眺 めてみる. 高層大気は、より短波長の紫外線に常に曝 されているが、高度12 km までは紫外線耐性菌が存 在していることが明らかとなっている[1]. 航空機の パラボリック飛行による採集標品からは、1立方メー トルあたり約1個の細菌が検出されている[2]. その 菌の遺伝子配列(16S rRNA)を解析すると、紫外線耐 性のある Deinocossus (デイノコッカス) 属の新種で あり、実験室でその紫外線耐性は、これまでに知られ ている中でもっとも紫外線耐性を備えた Deinococcus radiodurance よりもさらに高い紫外線耐性を有すると いう[2].この菌は、放射線耐性と同時に高い乾燥耐 性を示すことも分かっている[2].また、かつての宇 宙ステーションミール船体内(高度約300 km)にも 紫外線耐性を有する菌株が見出されており[2,3],地 球表層だけではなく, 我々の上空彼方にも生命圏は拡 がっている.

一方,地球表層を鉛直下向きに眺めてみる.近年の 掘削技術と分析技術の発達に伴い,地下環境にも生命 活動があることが近年認識されるようになってきた[4, 5].地下環境に生息する微生物は,無光層・無酸素と いう環境であるがゆえに,必然的に分子状酸素(O₂)を 用いないエネルギー獲得を身に付けていることが分かっ てきた[6].彼らは,代謝(生命活動)を行う際に, 水素,炭素,窒素,硫黄,鉄などの元素を地下水およ び地下鉱物から取り込むことによって増殖を行ってい

2. 横浜国立大学大学院工学研究院

る. 生育する温度に関して言えば,我々の身の回りの 微生物の多くは60 以上になると活性を失ってしまう. さらに水の沸騰する100 では,微生物を生育するこ とはできない. なぜなら生体を構成するタンパク質 (酵素を含む) や DNA,細胞膜が熱により変性し,機 能しなくなるからである.

しかし,陸上の温泉地帯や海底熱水系から単離され た微生物には80 を超える温度でも生育できるものが 存在する.このような80 以上の高温に至適生育温度 を持つ原核(核を持たない)微生物は特に超好熱性菌 と分類される[7](Kelly and Adams, 1994).現在まで に200種類以上の超好熱性細菌が,世界各地の熱水系 から単離され,生育最高温度が113 [8]に達するもの も確認されている.ごく最近,生育最高温度の記録が, 121 に更新された[9]ことは,記憶に新しい.生命生 育限界に関する他因子(e.g.塩濃度:0-5 mM, pH: 0-10.5, 圧力:~1,000気圧)については,優れた総説 [10]がある.実証はまだ行われていないが,微生物学 者の間では,150 くらいまで微生物は生き永らえる 可能性を指摘する意見[11]もあり,学術的に今後更新 されていくであろう世界記録から目が離せない.

惑星科学的に地球熱水環境を概観した場合,それら が生物界に及ぼす影響は大きい.まず,噴出する熱水 は非常に高温であり,水素や硫化水素等の還元性物質 に富んでおり,熱水鉱床の発達により銅(Cu),亜鉛 (Zn),鉄(Fe),鉛(Pb),砒素(As),金(Au)などの重 金属にも富んでいる.また,温度,pH,酸化還元電 位等の物理化学的な性状やそれらの勾配が,岩石や堆 積物と反応することによって大きく変化している[12].

^{1.} 独立行政法人産業技術総合研究所 海洋資源環境研究部門

これらの多様な環境因子が、生物種の多様な存在形態 をもたらす要因として働いている.従来、変動的で苛 酷な環境である熱水系は生命活動には極めて不利であ ると考えられていたが、1970年後半から次々に発見さ れる海底熱水系[13]や1990年代の古細菌(アーキア) の発見などが大きな転機となり[14]、その極限環境下 でも様々な種類の微生物が強かに存在し、多様な存在 形態を有することが近年の調査・研究によって認識さ れるようになった.このように陸上の表層地下に限ら ず、海底熱水系周辺 [15,16]にも活発な生命活動があ ることが近年の研究で明らかになっており、現世の熱 水系における微生物学と地質学は系統的に捉えられる ようになった[17].

以前,筆者らは有機地球化学的・宇宙化学的な観点 に立ち,バイオマーカー(生物指標化合物)から新し い生命圏を探る基礎戦略について述べた[18].「バイ オマーカー」なる言葉は,その化学痕跡が明らかに生 物由来である場合,すなわち現在もしくは過去の生物 的証拠が明らかな場合が「バイオマーカー」である. ごく有り触れた有機物であるアミノ酸には,立体異性 (D-体とL-体:鏡像異性,光学異性ともいう)がある. しかし,タンパク質を構成するのは,L-体アミノ酸の みであり,生命圏だけが有する特徴であることから, 有用な指標である[18].また,生命活動由来のアミノ 酸は、タンパク性アミノ酸と非タンパク性アミノ酸の モル分率など個々の組成比にも特徴が表れる.

これまでは、有機物と微生物活動の関係が切り離さ れて議論されていることが多かったが、熱水系での生 命活動を支える有機物と微生物の挙動は、相互依存的 であるため、双方の評価を同時に行うことは重要であ る.つまり、有機物の特徴から間接的に生命活動の痕 跡や現況を推定し、同時に微生物活動の直接的な単離・ 培養・観察からその推定の裏付けを行えるためである. 加えて、鉱物学的、地球化学的、地球物理的な側面か らの総合的なアプローチがあればより確実である.こ のため、科学技術振興調整費総合研究課題として「海 底熱水系における生物・地質相互作用の解明に関する 国際共同研究」(通称:アーキアンパーク計画)が進 められている[19, 20]. このプロジェクトを簡単に述 べると,熱水系深部に生息する住人(どんな微生物が いるか?),住居(どんな住処に棲息するか?),食糧 (どんなものを食べているか?)を総合的に明らかに するための国際共同研究である.

まず、プロジェクトの予備的検証として陸上鉱山深 部熱水系の掘削調査を行った.陸上表層にある温泉 (熱水系)は、パクテリアマットや表層コア試料の採 取が簡易であることからこれまでに多くの報告例が知 られている.しかし、陸上深部についてはアプローチ が難しく未だに調査事例が少ない[21].特に大型掘削 機を用いる陸上深部熱水系での掘削調査もやはり事例 が少ない[22].本稿では、陸上深部熱水系の掘削調査 から採取された熱水およびコア試料中に検出されるア ミノ酸組成とその立体化学的な特徴について考察し、 得られたアミノ酸の起源について結論付けた.陸上深 部に育まれた地下生命圏の存在について議論し、同フィー ルドから得られた新しい微生物種の発見と併せてレビュー してみたい.

2. フィールド調査

陸上深部熱水系の掘削調査は,北海道西部の豊羽鉱 山をモデルケースに行った.豊羽鉱山は,札幌市の中 心から西方約30 km に位置し(図1),西南北海道グ

図1:掘削調査を行った北海道豊羽鉱山のロケーション.

図 2 : (a) 地下550m の鉱山内における掘削の様子 (b) 噴出熱水およびバクテリアマットのサンプリング の様子 http://www.gsj.go.jp/~marumo/index.htmlより引用.

リーンタフ地域の一部となっている. この鉱山は日本 最大の鉛(Pb), 亜鉛(Zn), 銀(Ag)の鉱脈鉱床である ことで知られる[23,24]. これらの他に金(Au), すず (Sn), タングステン(W), インジウム(In), ビスマス (Bi), モリブデン(Mo), コバルト(Co), ニッケル(N i), ガリウム(Ga)など多種多様の希少金属を産する. 特にインジウム(In)については, 粗鉱中の平均品位が 150~250 ppm と異常に高く, 埋蔵量でも生産量にお いても世界一のインジウム鉱山として知られている. インジウム(In)は, 液晶や発光ダイオードなどの原料 として欠かすことのできない元素である.

豊羽鉱山を選定した理由は、この鉱山が陸上深部の 熱水環境下で採掘作業が実施されているからである. 鉱床の生成年代については、2.93~0.49 Ma (293 万 年~49 万年)という非常に若い値が得られている[21]. 豊羽鉱山周辺での熱水活動は今も続いており,活動的 な地熱系が存在する.鉱山深部の坑道では岩盤温度が 最高で150 に達している[24].その坑内深部(地下 550 mレベルの宗谷)において,116.3 mの水平掘削 を行い,また熱水サンプラーを用いて掘削孔から噴出 する熱水(毎分1リットル湧出)の採取も行った(図 2).掘削したコアは,すぐに嫌気保持のため嫌気パ ウチを行った.熱水は,コンタミネーション(外部汚 染)を避けるため滅菌済み容器中に採取・保管し,実 験室での分析に供した.

3. 実験

3.1 熱水中に含まれるアミノ酸の同定と定量

まず、豊羽鉱山深部から採取された熱水試料につい て、代表的な溶存性有機物であるアミノ酸の同定と定 量を行った.分析手順を簡単に述べる.得られた各々 の熱水試料2 mlを凍結乾燥し,6 M 塩酸を1 mlを 加え、110 で24時間加水分解を行った.加水分解を 行うことでペプチドなどの結合態アミノ酸をモノマー として分析することができる.図3の実験手法にした がって、陽イオン交換樹脂を用いて脱塩を行い、10 %アンモニア水で溶出させることによってアミノ酸フ ラクションの分画を行った.乾燥してから pH 1で定 容し、イオン交換クロマトグラフによりアミノ酸の同 定と定量を行った.使用した機器は、島津 LC-6A ア ミノ酸分析計システム (カラム: Shim-Pack ISC-07 / S1504, 4.0 mm i.d.×150 mm) を用いた. 標準試料の 溶出アミノ酸の保持時間と溶出順序の一致からアミノ 酸の同定を行い、ピーク面積値との比較から定量を行っ た[25].

3.2 熱水中に含まれるアミノ酸の立体異性比(D/L比)

次に,豊羽鉱山深部から採取された熱水試料について,含まれるアミノ酸の D-体と L-体の特徴を探った. その立体異性体比は,特に D/L 比と呼ばれる.D-体

(Derivatized by O-phtalaldehyde and N-Acetyl-L-Cystein)

図3:熱水試料の分析手法. 文献[27]を改変.

とL-体のアミノ酸は、分子の中心に不斉炭素を有している.ちょうど鏡に写った虚像と実像の関係と同じであるから、鏡像異性体とも呼ばれる.また、右旋性と左旋性の光に対する挙動も正反対であることから光 学異性体とも呼ばれる.いずれにせよ D/L 比は、生命活動の度合いを評価するうえで重要な指標である.

アミノ酸の D/L 比の測定は以下のように行った. 図3の実験手順にそって得られたアミノ酸の最終フラ クションを N-アセチル-L-システイン及び o-フタルア ルデヒドを用い、誘導体化を行った(プレカラム誘導 体化法). あらかじめ誘導体化の前に脱塩と分画を行っ ているから誘導体化反応の阻害剤は極力除去されてい る.この誘導体化により、D-体とL-体のアミノ酸は、 ジアステレオマー(2つ以上の不斉炭素を持つ化合物) に変化する.その後、メタノールでカラムコンディショ ニング, イオン交換水で平衡化した固相 (TOYOPACK-ODS カラム) に添加後、メタノール溶 出を行った.その溶出フラクションを逆相?高速液体 クロマトグラフ (ポンプ: TOSOH DP-8020, 検出器: TOSOH UV-8020、カラム: YMC-pack Pro C18 (4.6 mm i.d. × 250 mm) に供し, 酢酸緩衝液 (A 液) とメ タノール (B液) の2液グラジエントで溶離させた. グラジエント条件は、0 min. (B液10%). 60 min. (B液20%).110 min. (B液60%).115 min. (B 液80 %). 125 min. (B液80 %). 130 min. (B液0%)とした[26]. ここでは、タンパク性アミノ酸の中で代表的なアスパラギン酸、グルタミン酸、アラニンについて D/L 比を求めた. この3つのアミノ酸を選択した理由は、主要なアミノ酸であることと、分析誤差が最も小さいことである[27]. 一連の手順における D/L 比の分析誤差は、Asp: ±0.8 %、Glu: ±0.4 %、Ala: ±0.7 %であった.

3.3 コア試料に含まれるアミノ酸と酵素活性

掘削されたコアのうち,熱水脈 (SN101-14) と石 英脈 (Toyoha 61) を試料として用いた.前者は,パ イライトを主成分とするため黒色を帯び,後者は5 mm の石英を主成分とするため灰白色を帯びている. セラミック乳鉢で粉砕した試料約0.50g を HF 分解法 (5 M HF-0.1 M HCl, 110 , 16h) によりケイ酸塩 を除去した[26,27]. その後,6 M 塩酸で110 , 2 時間の酸加水分解を行い,その後は熱水試料と同じく アミノ酸の評価を行った.

またコア試料については、酵素活性の一種であるホ スファターゼ活性の有無を検討した.ホスファターゼ は、リン酸エステル結合を切断する酵素(タンパク質) であり、他の酵素よりも熱的に安定に存在できる.ホ スファターゼ活性は、p-ニトロフェニルリン酸を基質 として、以下のように測定した.粉砕試料0.50gにト ルエン0.1 mL、修飾ユニバーサル緩衝液(pH 8.0ま たは pH 6.5)溶液2 mL、25 mM p-ニトロフェニル リン酸0.5 mLを加え、37 で1時間反応後 CaCl₂-NaOH を加えて反応を停止させた.この後、遠心分離 にかけ0.2 µm フィルター濾過後、吸収波長410 nm の吸光度の変化を測定することにより、生成物 p-ニ トロフェノールの生成率を求め、活性値とした[28].

4. 結果と考察

4.1 熱水試料中のアミノ酸濃度と組成

鉱山深部(-550 m)で噴出する熱水試料から得られ

Sampling site	Hydrothermal water sample			Rock sample	
	A-site	B-site	C-site	SN101-14 Toyoha 61	
emperature (°C	63.5	71.3	48.3	-	-
unit	μmol/1	μmol/1	μmol/1	nmol/g-rocknmol/g-rock	
Asp	0.36	0.26	0.30	21.45	7.86
Thr	0.24	0.14	0.13	11.15	3.94
Ser	0.75	0.38	0.38	56.64	17.28
Glu	0.19	0.13	0.20	20.42	4.90
α-AAA	n.d.	n.d.	n.d.	n.d.	n.d.
Gly	1.78	1.45	0.70	61.37	23.99
Ala	0.47	0.28	0.21	25.22	9.28
α -ABA	n.d.	n.d.	n.d.	n.d.	n.d.
Val	0.38	0.20	0.28	9.19	4.50
Cys	0.09	0.68	n.d.	n.d.	n.d.
Met	0.22	0.17	tr.	n.d.	n.d.
Ile	0.23	0.14	0.03	4.42	2.09
Leu	0.71	0.44	0.10	7.32	4.58
Tyr	tr.	n.d.	tr.	0.54	tr.
Phe	0.33	0.19	0.07	2.93	3.55
β-Ala	0.05	0.04	0.06	0.35	0.20
β-AiBA	n.d.	n.d.	n.d.	n.d.	n.d.
γ-ABA	0.14	0.02	tr.	0.50	0.32
ε-AVA	tr.	tr.	n.d.	tr.	n.d.
Pro	0.16	0.11	0.12	9.78	4.43
Total	6.10	4.60	2.57	230.00	86.93

表1:北海道豊羽鉱山深部の熱水および岩石に含まれたアミ ノ酸濃度

tr.: trace amount, n.d.: not detected

たアミノ酸のイオン交換クロマトグラムを図4に示す. 3つの熱水採取地点でのアミノ酸の定量値を表1に示 す.検出された主要なアミノ酸は、グリシン、アラニ ン、アスパラギン酸などのタンパク性アミノ酸であり、 -アラニン、-アミノ酪酸などの非タンパク性アミ ノ酸は微量であった.熱水中でのアミノ酸の存在形態 は、溶存性物質(Dissolved Organic Matter = DOM) 中にある他、粒子状有機物(Particulate Organic Matter = POM)中にも存在していると考えられる.本試料に おける熱水中のアミノ酸濃度は、0.7.1.8 nmol/ml で あり、陸源有機物の堆積が少ない島弧型海底熱水系か ら噴出する熱水中のアミノ酸濃度[29]とほぼ同レベル の濃度であることが分かった.

図5にアミノ酸の組成比(モル分率)を示す.3つ の熱水採取地点から得られたアミノ酸の組成傾向は, 主要成分については類似しているものの B-site では,

図4:(a)熱水試料(Aサイト)と(b)熱水脈コア試料(SN-101)から検出されたアミノ酸のイオン交換クロマト グラム

> 略記. Asp: aspartic acid, Thr: Threonine, Ser: serine, Glu: glutamic acid, Pro: proline, Gly: glycine, Ala: alanine, Val: valine, Met: methionine, lle: isoleucine, Leu: leucine, Tyr: tyrosine, Phe: phenylalanine, β -Ala: β -alanine, γ -ABA: γ -aminobutyric acid, δ -AVA: δ -aminovaleic acid.

図5:熱水中に含まれるアミノ酸の組成比(モル分率)

硫黄を分子内に有するシステイン(Cys)が多く含まれ ている. また, アミノ基(-NH2)とカルボキシル基(-C OOH)を末端に持つ -アミノ酸類 (-アラニン, -アミノ酪酸, -アミノ吉草酸など)は、いずれも微 量成分であることが分かる.アミノ酸のうちカルボキ シル基を2つ持つアスパラギン酸とグルタミン酸は、 熱水変成や続成作用を受けると -位にあるカルボキ シル基の脱炭酸により(図6)、それぞれ -アラニン と -アミノ酪酸を二次的に生成することが明らかと なっている[26].しかし, -ala/Asp 比は, 0.14 (Asite), 0.15 (B-site), 0.20 (C-site)であり, 陸上深部 熱水系に含まれた -アミノ酸類は、微量成分であっ た.これは、熱水系で新鮮な有機物が定常的に供給/ 生産されていることを示唆する[30].このため、陸上 鉱山深部熱水系より検出されたアミノ酸の起源は、無 生物的な生成物というよりはむしろ熱水系深部の微生 命活動に起源を発すると考えられる.

4.2 熱水試料中のアミノ酸の立体化学

次に,検出されたアミノ酸の立体的な特徴について 述べる.アミノ酸には,D-体とL-体の二つの立体異 性体(鏡像異性体とも呼ばれる)が存在するが,既知 の地球型生命の有するタンパク質は,基本的にはすべ てL-体のみから構成される.水熱的な変成により, 部分的にD-体アミノ酸へと立体反転(ラセミ化)す ることもある.このため,微生物活動を評価する際に D/L 比の観察は有効な手段である.一般的には,生命 活動がさかんな環境では,D/L 比が減少する傾向であ り,逆に生命活動が乏しい場所ではD/L 比は増加す る傾向にある[26].室内模擬実験としてアミノ酸を無 生物的に合成すると、不斉合成や不斉分解を意図しな い限り、水熱合成[31]や模擬原始大気からの合成[32]、 模擬星間ガスからの合成[33]などのいずれの反応から も生成するアミノ酸は、D-体とL-体のラセミ体(等 量混合物)として得られる.

しかし、表2に示すように検出したアスパラギン酸 (Asp)、グルタミン酸(Glu)、アラニン(Ala)のいずれ も L-体アミノ酸が大過剰に存在し、D-体アミノ酸が 微量成分であることが分かった.最もラセミ化速度の 速いアミノ酸は、アスパラギン酸であるが、D/L 比は 平均0.09と非常に小さい値を示した.このため、先の アミノ酸組成の特徴からも陸上地下熱水系での有機物 の無生物的生成の形跡は見られず、熱水中に含まれた アミノ酸は、微生物活動に由来する生物起源のアミノ 酸であることが判明した、また、熱水中でラセミ化の 進行も小さいことから、熱水中の地下微生物による新 鮮な有機物供給 / 生産が示唆された[30].物質の流入 が無く、単純な堆積環境である場合、アミノ酸のラセ ミ化反応速度論は定量的に議論が展開できる[26].し かし、物質流入が絶えず変動している熱水環境では、 温度勾配や溶存性マトリックスの影響も受けており、 ラセミ化反応の定量的議論は困難と考えられる.

表2:北海道豊羽鉱山深部の熱水および岩石に含まれたアミ ノ酸の光学異性比(D/L 比)

	Hydrothermal water sample			Rock sample		
Sampling sit	A-site	B-site	C-site	SN101-14 Toyoha 61		
Asp	0.08	0.05	0.15	0.13	0.06	
Glu	0.09	0.16	0.09	0.06	0.09	
Ala	0.06	0.00	0.00	0.05	0.05	

4.3 コア試料中のアミノ酸

コア試料中からも多種多様なアミノ酸が得られた. 全加水分解アミノ酸量は、熱水脈コアと石英脈コアの 各々で230 nmol/g-rock, 87 nmol/g-rock であった.熱 水脈コア試料の方が石英脈よりも約2.6倍アミノ酸濃 度が高かった.図4の溶出ピークから熱水試料のアミ ノ酸組成と比較すると、アミノ酸分子内にヒドロキシ ル基(-OH)を有するセリン(Ser)やスレオニン(Thr)の モル分率が、熱水中のそれよりも明らかに高いことが 分かる.このことは、岩石中に存在するセリンやスレ オニンは、熱水中よりも安定に存在できることを示す. 熱水脈コア試料は、パイライト(黄鉄鉱)に富んでい るが、硫黄 S を分子内に有するシステインやメチオ ニンの含有量は微量であった.

図7 に熱水脈コア試料から得られたアミノ酸の D-体と L-体のエナンチオマーを分離した逆相-高速イオ ンクロマトグラムを示す.熱水試料と同様にアスパラ ギン酸(Asp),グルタミン酸(Glu),アラニン(Ala)の いずれも L-体アミノ酸が大過剰に存在し,D-体アミ ノ酸が微量しか含まれないことが分かった(表2).こ のため,鉱山深部の岩石中にも熱水中と同様に微生物 活動があることが示唆された.

図7:熱水脈コア試料から抽出したアミノ酸の D-体と L-体 を分離する逆相-高速イオンクロマトグラム

4.4 酵素活性値の有意性

豊羽鉱山熱水脈コア試料(SN101-14)からは、1.3 nmol/min/g-rockの活性が示された. 無機由来のバッ クグラウンド活性値として,粘土鉱物(モンモリロナ イト)やアモルファスシリカのホスファターゼ酵素活 性を測定したところ,両者の酵素活性値は約0.5 nmol/min/g-rockであり,コア試料の値は有意である ことが分かった.同一の熱水系コア試料を蛍光顕微鏡 で観察したところ[34],微生物個体を示す蛍光スポッ トが得られており[35],酵素活性値の結果と整合する. また、石英脈コア試料(Toyoha 61)の酵素活性値は 0.3 nmol/min/g-rock であり、有意な活性値ではない. 蛍光顕微鏡での微生物個体の観察は困難であったこと から[35]、石英脈岩芯中の微生物活動は乏しいと考え られる.

4.5 地下熱水系の全菌数密度と新種の微生物株の発見

掘削口から噴出する熱水中に含まれる全菌数のカウ ントを行ったところ,掘削現場近傍およびその他の坑 内岩盤から噴出する熱水中にも微生物が10³~10⁵ cells/mlで存在することが明らかになった[36].また, 好気性有機物培地や好気性無機物培地での65 培養 によって好熱菌の生息も認められ,それらが10²~10³ cells/ml レベルで存在し地下高温環境での微生物生産 に寄与していることが示唆された.一方,嫌気性菌用 培地では,数日間の培養期間中ではほとんど増殖が確 認されなかったが,100 倍濃縮試料や長期培養実験で は増殖が確認されている[36].

豊羽鉱山において採水した熱水と岩石試料について, メタン生成菌、硫酸塩還元菌、鉄還元菌および発酵性 細菌をターゲットとして、様々な基質を用いた生育培 地で嫌気培養 (55,60,70) を開始したところ,3 種類の培地を用いた培養液中で微生物の生育が確認さ れた[37]:1) ピルビン酸・乳酸・酢酸または水素を 電子供与体として添加した硫酸塩還元菌用培地,2) 酢酸を電子供与体とした鉄還元菌用培地,3)ブドウ 糖を基質とした発酵性微生物生育用培地である[37]. また、メタン生成菌の増殖は、種々の基質(酢酸・蟻 酸・水素・メタノール) でも確認されていないものの, 16S rDNA 配列を標的とした系統解析により菌相の 分析を行ったところ、これら高温培養液中には好熱性 の硫酸還元菌である Thermodesulfovibrio や酢酸生成 菌である Acetobacterium 等の微生物が存在している ことが明らかとなった(図8)[38]. Thermodesulfovibrio は嫌気条件下で無機物を基質として生育する事が可 能でその生育には硫化水素の発生を伴うことが知られ ている.確認されたいずれの微生物も嫌気条件下で独

図8:豊羽鉱山熱水系から培養・単離された新規微生物の透 過型電子顕微鏡写真. 文献[38]より引用.

立栄養的にエネルギーを得ることが可能であり、今回 の採集場所である地下熱水脈においても十分に生育可 能であることが示唆されており、上記の好熱性嫌気性 微生物が鉱山内の熱水脈において硫化物の形成や有機 物生成に関与していると考えられている[38].

5. おわりに

陸上深部での熱水活動が現在も活発に引き続いてい る豊羽熱水鉱床は、陸上鉱山深部熱水系に生育する地 下生命圏を明らかする上で有益な調査フィールドであっ た.まず本研究では、豊羽鉱山深部から湧出する熱水 中のアミノ酸の組成および立体的な特徴から微生物に よる地下生命活動を支持する証拠を得た.また、バッ クグラウンドよりも有意な酵素活性値を得たこと、蛍 光顕微鏡により微生物個体を直接観察できたことは、 アミノ酸の生物起源と符合する.プロジェクトの微生 物グループからは、より直接的である微生物活動の具 体的な菌数密度と新種の微生物株の発見が報告され、 化学的アプローチと生物学的なアプローチがよく符合 する結果となった.陸上深部での熱水の動きが発達し ていると、図8のような独立栄養微生物が育まれ、そ の熱水中の有機物を栄養とする従属微生物がその周辺 域に発達することとなり,岩石中での生命活動を補助 する重要な役割を地下熱水活動が担っていることにな る.

前述のように地球熱水環境は,陸上表層の熱水系だ けではなく、地球のテクトニックな境界に沿った海底 にも存在する.現在,伊豆-小笠原海域の島弧型熱水 系および南部マリアナ海域の背弧型熱水系の深部(海 底下)についても微生物学的,鉱物学的,地球化学的, 地球物理的などの様々な側面から総合的な調査が現在 進められている[19,20].本稿で検証したようにアミ ノ酸のバイオマーカーとしての指標を応用すれば、海 底熱水系深部での有機物の起源[39]と地下生命圏の様 子[40]が、今後徐々に解明されていくであろう.地球 の極限環境[41]ともいうべき熱水系には多様性に富ん だ生命圏が形成されていることは、遺伝学的にも確認 されている[42].地球が単なる水惑星というだけでな く、地球内部が冷え切っておらず熱源が保持されてい ることと多様な地球生命圏の形成は、深く関係する事 象であると思われる.

6. 謝辞

本稿を執筆するに当たり,編集委員の倉本 圭 先生な らびに匿名審査委員からは建設的な査読意見を頂いた. ここに記して感謝申し上げたい.本調査は,科学技術 振興調整費総合研究課題「海底熱水系における生物・ 地質相互作用の解明に関する国際共同研究」(アーキ アンパーク計画)の一環として行われた.豊羽鉱山掘 削調査およびサンプリングに際して,現場に携わら れた研究者一同の皆様への謝意を付記する.本研究を 遂行するにあたり,貴重なご意見を頂いた横浜国立大 学大学院工学研究院の堀内 司氏,金子 竹男 氏,三 菱化学生命科学研究所の河崎 行繁 博士にお礼申し上 げる.

7. 参考文献

- [1] 板橋 志保,山岸 明彦,2000,第14回日本宇宙生物科学会講演要旨
- [2] 山岸 明彦,板橋 志保,2000,第16回日本微生物 生態学会講演要旨
- [3] 山岸 明彦,板橋 志保,2000,平成12年度大気球シンポジウム講演要旨
- [4] T. Gold, 1992, Proc. Natl. Acad. Sci. USA 89, 6045.
- [5] R. J. Parkes, B. A. Craggs, S. J. Bale, J. M. Getliff, K. Goodman, P. A. Rochelle, J. C. Fry, A. J. Weigghtman, and S. M. Harvey, 1994, Nature 371, 410.
- [6] J. K. Fredrickson and M Fletcher, 2001, Subsurface Microgeobiology and Biogeochemistry, Wiley-Liss Inc.
- [7] M. R. Kelly and M. W. Adams, 1994, Antonie Van Leewenhoek 66, 247.
- [8] E. Blochl, R. Rachel, S. Burggraf, D. Hafenbradl,
 W. H. Jannasch, and K. O. Stetter, 1997,
 Extremophiles 1, 14.
- [9] K. Kashefi and R. D. Lovley, 2003, Science 301, 934.
- [10] L. J. Rothschild and R. L Mancinelli, 2001, Nature 409, 1092.
- [11] J. W. Deming and J. A. Baross, 1993, Geochim. Cosmochim. Acta 57, 3219.
- [12] W. H. Jannasch and J. M. Motti, 1985, Science 229, 717.
- [13] J. B. Corliss, J. Dymond, L. I. Gordon, J. M. Edmond, R. P. von Herzen, R. D. Ballard, K. K. Green, D. William, A. Bainbridge, K. Crane, and T. H. van Andel, 1979, Science 203, 1073.
- [14] 大島 泰郎, 1995, 生命は熱水から始まった,東 京化学同人.
- [15] B. B. Jorgensen, F. M. Isaksen, and H. W.

Jannasch, 1992, Science 258, 1756.

- [16] C. Jeanthon, S. L'Haridon, A. L. Reysenbach, E. Corre, M. Vernet, P. Messner, U. B. Sleytr, and D. Prieur, 1998, Inter. J. Systematic Bacteriol. 48, 913.
- [17] A. Reyshenbach, and S. L. Cody, 2001, TRENDS Microbiol. 9, 79.
- [18] 高野 淑識, 小林 憲正, 2003, 日本惑星科学会誌12, 19.
- [19] T. Urabe, A. Maruyama, K. Marumo, N. Sheama, and J. Ishibashi, 2001, Inter Ridge-Crest Res. 10, 23.
- [20] A. Maruyama, and T. Urabe, 2003, J. Geography 112, 309.
- [21] Y. Murakami, T. Iwatsuki, and T. Naganuma, 2003, J. Geography 112, 277.
- [22] K. Marumo, 2001, Japan Earth Planet. Sci. Joint Meeting, Cm-010.
- [23] E. Ohta, Y. Kawano, M. Nakagawa, and H. Kagami, 1998, Resource Geol. 48, 183.
- [24] J. Yajima, H. Ohta, and Y. Kanazawa, 1991, Mineralogical J. 15, 222.
- [25] Y. Takano, H. Masuda, K. Ushio, T. Kaneko, K. Kobayashi, T. Takahashi, H. Hashimoto, and T. Saito, 2001, Anal. Sci. 17, 1635.
- [26] Y. Takano, J. Kudo, T. Kaneko, K. Kobayashi, Y. Kawasaki and Y. Ishikawa, 2004, Geochem. J., 38, 153.
- [27] 工藤 潤也, 高野 淑識, 金子 竹男, 小林 憲正, 2003, 分析化学 52, 35.
- [28] Y. Edazawa, Y. Takano, K. Kobayashi, K. Marumo, and T. Urabe, 2002, Viva Origino 30, 3.
- [29] T. Horiuchi, Y. Takano, K. Kobayashi, K. Marumo, J. Ishibashi, and T. Urabe, 2003, Org. Geochem., in press.
- [30] Y. Takano, R. Sato, T. Kaneko, K. Kobayashi, and K. Marumo, 2003, Org. Geochem. 34, 1491.
- [31] H. Yanagawa and K. Kobayashi, 1992, Origins

Life Evol. Biosphere 22, 147.

- [32] K. Kobayashi, T. Kaneko, T. Saito, and T. Oshima, 1998, Origins Life Evol. Biosphere 28, 155.
- [33] 高野 淑識,金子 竹男,小林 憲正,高橋 淳一, 2002,日本惑星科学会講演要旨
- [34] T. Tsuji, Y. Kawasaki, S. Takashima, T. Sekiya and S. Tanaka, 1995, Appl. Environ. Microbiol. 61, 3415.
- [35] 三菱化学生命科学研究所 河崎 行繁 博士, 私信.
- [36] Y. Higashi, and A. Maruyama, 2001, Japan Earth Planet. Sci. Joint Meeting, Cm-013.
- [37] K. Mori, S. Hanada, A. Maruyama, 2001, Japan Earth Planet. Sci. Joint Meeting, Cm-P008.
- [38] K. Mori, S. Hanada, A. Maruyama, and K. Marumo, 2002, Int. J. Systematic Evol. Microbiol. 52, 1675.
- [39] Y. Takano, T. Horiuchi, K. Kobayashi, T. Urabe, and K. Marumo, 2003, Chem. Lett. 32, 970.
- [40] Y. Takano, K. Kobayashi, T. Yamanaka, K. Marumo, and T. Urabe, 2004, Earth Planet. Sci. Lett., 219, 147.
- [41] T. Naganuma, 2003, J. Geography 112, 226.
- [42] K. Takai, and K. Horikoshi, 1999, Genetics 152, 1285.