火星大気子午面循環への地形効果 ^{高橋 芳幸1}

1. はじめに

火星地形の起伏は、大気のスケールハイト(約 10 km)と同程度かそれ以上におよんでいるため、 火星大気大循環の力学過程に非常に大きな影響を 及ぼしていると予想される.インパクトクレータ に伴う深い盆地と大きな火山にともなう高原との 高低差はおよそ 30 km に達し、地球型惑星の中で 最大のものとなっている [1].惑星規模の大規模場 という見地から10°×11.25°(緯度×経度)程度の分 解能で平均化してみても、高低差は10 km程度に及 ぶ(図1a).そして、火星地形における大きな特徴 の一つは、南北半球の非対称性である.例えば、 東西平均した地形に注目すると、南半球の方が北 半球よりも平均して約3 kmほど高い.ここでは、 この火星地形の南北半球の非対称性が大気大循環 に及ぼす影響について注目していくことにする.

これまでに行われた火星大気大循環モデル (GCM)を用いた計算からは,循環強度の季節変化 に火星地形の南北非対称性が寄与していることが 示唆されてきた [2,3].具体的には,北半球の夏至 におけるハドレー循環の強度は北半球の冬至の時 に比べ2分の1程度であることが示されている. この循環強度の差は,主に離心率の大きな火星軌 道に起因する火星に到達する太陽放射フラックス の変化のためであるとされているが,同時に地形 の効果も示唆されている.しかし,これまでに地 形の南北非対称性が子午面循環に及ぼす影響につ

1 東北大学大学院理学研究科地球物理学専攻

いての詳しい議論が行われたことはない. これま でに行われた GCM による計算では現実的なすべ ての効果が含まれているため,地形が主要因であ るのか,日射量の非対称性,地面熱慣性やアルベ ドの非対称性が主要因であるのかが分離できてい ない. さらに,どのようなメカニズムで循環強度 が変化するのかについても明らかにされていない.

本稿では,我々が火星大気子午面循環に対する 両半球間の高低差の影響を調べた結果について述 べる.我々は,火星大気大循環モデルを新たに開 発し,地形の存在がどのような力学的過程を通し て非対称な南北循環を形成しているのかについて 詳細に調べた.同時に,地面を考慮する際に同時 に存在しているいくつかの非対称性要因,すなわ ち,地形,地面アルベド,地面熱慣性等による子 午面循環への影響を数値実験により評価し,それ らの結果を比較した.火星大気中に存在するダス トは大気の熱構造,循環構造に大きな影響を及ぼ すことが知られている.しかし,本研究において は結果の考察を容易にするために火星大気中に存 在するダストの効果は考えないこととした.

2. モデル

本研究で開発したモデルでは,鉛直方向に静水 圧平衡を仮定した流体の方程式系(プリミティブ 方程式系)を差分法により解いている.モデルの 水平分解能は10°×11.25°(緯度×経度)としている.

火星大気子午面循環への地形効果/高橋

鉛直方向には火星の地面から高度約115kmまでに 35層をとっている。

CO₂ 大気を仮定し、CO₂ による大気放射過程を 考慮している.考慮している波長域はCO2 15µm バ ンド,太陽近赤外バンド,そして極端紫外・紫外域 である. 放射加熱過程と後に述べる地面温度の計 算においては、日変化を考慮している. 乱流拡散 は Levy et al.[4] の乱流拡散過程を乾燥条件で用い ている. さらに、熱に対してのみ乾燥対流調節を 用いている. 乾燥対流調節は対流の簡単なパラメ タリゼーションであり,計算された温度の鉛直勾 配が熱的に不安定であった場合に、エネルギーを 保存しつつ熱的に中立な温度勾配(乾燥断熱減率) に置き換える方法である. 高度約 90 km 以上では, 東西風には速度に比例する摩擦項を加え、南北風 には東西平均成分からのずれの成分を減衰させる 摩擦項を加えている. CO2の凝結に伴う潜熱によ る加熱は考慮するが、大気の総質量は変化しない と仮定している. 地面温度は Pollack et al. [5] と同 様の方法で熱収支を計算することにより導出して いる.地面の運動量・熱フラックスはバルク法を

図1 モデルで用いた(a)地面の起伏、(b)地面アルベド、 (c)地面熱慣性の分布

用いて見積もっている.

モデルで使われる地面の起伏は Mars Global Surveyor (MGS)に搭載された Mars Orbiter Laser Altimeter による観測に基づく [1]. 地面のアルベド, および地面の熱慣性のデータは Pollack et al. [6] で 用いられていたものと同じものであり, R. Haberle 氏から提供していただいた. モデルで用いた地面 の起伏, アルベド, 熱慣性の分布を図1に示す.

初期条件は静止した等温大気(200K)とし,45火 星日間積分した.太陽 - 火星間距離と自転軸の傾 きは45日の積分期間中も連続的に変化する.運動 エネルギーの時間発展を調べた結果,スピンアッ プ時間は20火星日程度であった.次節に示す結果 は,計算開始から35-45火星日を平均したもので ある.

3. 火星大気大循環の特徴

前節に概略を述べた我々の GCM は,過去の観 測およびこれまでの GCM による研究で得られて いる火星大気循環の特徴をよく再現している.図

図2 北半球の冬至(L_s=266[®] ー273[®])での時間・東西平均場.地面から4.5×10⁻⁵hPa気圧面(およそ高度90kmに相当)までを示す. (a)質量流線関数,(b)南北風,(c)東西風,(d)温度.気圧5.6hPa付近のほぼ水平な線は東西平均した地形を表す。(a),(b)中の 等値線間隔は一定ではなく対数的になっている.(a)においては,正の値は時計回りの循環を表す.(b),(c)においては,正の値 はそれぞれ南向きの風と東向きの風を表す。

2 に北半球の冬至 ($L_s = 266^\circ - 273^\circ$)の条件で計算 を行ったときの,地面から 4.5 × 10⁻⁵ hPa 気圧面 (およそ高度 90 km に相当) までの時間・東西平均 した(a)質量流線関数,(b)南北風,(c)東西風,(d) 温度を示す(L_s は惑星の軌道上の位置の角度の目 安であり, $L_s = 0^\circ$,90°,180°,270°はそれぞれ北 半球の春分,夏至,秋分,冬至に相当する).

子午面循環は鉛直方向には少なくとも高度約 90 km 付近にまで達している(図 2a). 地表付近,お よび,高度 60 km 付近をのぞいて,ほとんどの領 域は南風におおわれ,北半球から南半球にもどる 流れの多くは下層 5 km 以下に集中している(図 2b). 地面付近での風速は 15°Sで 10 m/s を超えて いる. 北半球中緯度では,赤道を横切る循環とは 逆向きの間接循環が形成され,これは鉛直方向に 高度約 60 km 付近まで広がっている(図 2a).

図 2c に見られるように,北半球では緯度幅の狭い西風ジェットが形成され,南半球から北半球の

低緯度にかけては相対的に緯度幅の広い東風領域 が形成される.これら2つのジェットは高度約90 km 付近で閉じている.この減速は主に高度約90 km以上に加えた摩擦のためである.地面付近の緯 度30°S 付近には西風領域が形成されている.地 表付近のこの西風の存在は MGS の電波掩蔽によ る大気圧観測からも推測されている[7].

下層 20 km あたりまでの大気温度分布は,冬の 高緯度域をのぞいて,緯度に対してほぼ一様であ る(図 2d).温度は,南半球高緯度から北半球中高 緯度に向かって単調に下降する.北半球中緯度付 近に大きな温度下降域があり,その南側には小さ な温度上昇域がある.温度上昇域の存在は高度約 20 km 以上で明瞭になり,低緯度から 50°N 付近に 向かって温度は上昇する.このような南北温度勾 配の逆転は,これまでの探査衛星によって火星大 気中で観測されている[8].

図3 質量流線関数の季節変化. (a) 北半球の春分 (Ls=357°-2°), (b) 北半球の夏至 (Ls=87°-91°), (c) 北半球の秋分 (Ls= 176°-182°), (d) 北半球の冬至 (Ls=266°-273°), 図の見方は図2aと同じ.

4. 春分・秋分の赤道非対称循環

図 3 は、質量流線関数の季節変化を示す.図 3a-d はそれぞれ、北半球の春分(*Ls*=357°-2°)、 夏至(*Ls*=87°-91°),秋分(*Ls*=176°-182°),そし て冬至(*Ls*=266°-273°)の質量流線関数である. 北半球の冬至の図は図 2a と同じものである.北半 球の夏至においては赤道を横切る 1 セルの循環が 形成され、そのパターンは北半球が冬至の時のそ れと反対となる(図 3b).

北半球の春分における循環は,高度約 20 km 以 上では赤道に対して対称であるが,高度約 20 km 以下では春分条件であるにもかかわらず赤道に対し て非対称であることが見てとれる.つまり,赤道を 横切る形で循環が存在し,その南側の逆向きの循環 との境界である水平風の収束領域は南半球の 20°S 付近に存在する.さらに,赤道を横切る循環の方が その南側の循環より強い.北半球の秋分の循環パタ ーンは春分の場合と似たものとなる. 高度約 20 km 以上の循環のパターンはほぼ赤道対称である が,高度約 20 km 以下の循環は春分のときと同じ ような非対称性を示す. 秋分においても 2 つの循 環の境界は南半球に存在し,赤道を横切る循環の方 が南側の循環より強くなっている.

図 3a,c に示した春分・秋分における高度約 20 km 以下の赤道非対称な子午面循環は,これまでの GCM を用いた研究でははっきりと指摘されてはい ない. Haberle et al.[9] の春分・秋分における子午 面循環は高度 20 km 以下において赤道対称なパタ ーンを示している。しかし,彼らの春分・秋分の 計算で設定された季節は正確な春分・秋分から北 半球の夏の方にずれている.春分・秋分の循環パ ターンにおける, Haberle et al.[9] の結果と我々の モデルの結果の違いは,主にこの季節のずれのた めであると考えられる.

春分・秋分の両方の時期において北側の循環の

60

日本惑星科学会誌Vol.10.No.2,2001

衣] 数值美颖1						
	季節変化	地形	地面アルベド	地面熱慣性		
Case 1-1	×	0	×	×		
Case 1-2	×	×	0	×		
Case 1-3	×	×	×	0		

図4 標準計算における地面から0.1hPa気圧面(高度約40kmに相当)までの質量流線関数(a)と、表1の数値実験の結果、(b)Case 1-1、(c)Case 1-2、(d)Case 1-3. 図の見方は図3と同じ.ただし、(a)-(d)の等値線間隔はそれぞれ5、5、1、1×10^ekg/sである.

方が南側の循環より強く,同様な赤道非対称の循 環パターンとなることは,季節,すなわち太陽-火星間距離の変化と太陽に対する自転軸の傾きが 原因でこの赤道非対称循環が形成されているわけ ではないことを示している.本モデルにおいて, 子午面循環の赤道非対称性を作りうる季節変化以 外の要因は3つ考えられる.それは,地形,地面 アルベドの空間変化,そして地面熱慣性の空間変 化である.これら3つの要因による子午面循環に 対する効果については次節で議論する.

5. 赤道非対称循環の要因

春分・秋分時の高度 20 km 以下に現れる赤道非 対称な子午面循環の原因を調べるために,3 つの 数値実験を行った.3 つの数値実験の条件を表1 に示す. Case 1-1 は地形のみを含む計算,Case 1-2 は地面アルベドの空間変化のみを含む計算,最後 に Case 1-3 は地面熱慣性の空間変化のみを含む計 算である.3 つのすべての計算において,太陽に 対する自転軸の傾きは零,太陽-火星間距離は 1.56 AU で一定とした.地面アルベドの空間変化 や地面熱慣性の空間変化を含まない計算において

火星大気子午面循環への地形効果/高橋

	季節変化	地形	地面アルベド	地面熱慣性		
Case 2-1	×	東西平均成分	×	×		
Case 2-2	×	東西平均成分 からのずれ	×	×		

図5 表2の数値実験の結果.(a) Case 2-1,(b) Case 2-2.図の見方は図4と同じ.(a),(b)の等値線間隔はそれぞれ5、1× 10⁸kg/sである.

は、全球一様にそれぞれの全球平均値を持つとし た、以下、季節変化、地形、地面アルベドの空間 変化、地面熱慣性の空間変化のすべてを含む春分 期の計算を"標準計算"と呼ぶことにする.

図 4b-d にそれぞれ Case 1-1, 1-2, 1-3 の結果を示 す. また、図 4a には比較のために標準計算の結果 を示す. Case 1-1 では標準計算と同様の循環強度 を持ち、赤道非対称な循環が得られる(図 4b). こ れに対し Case 1-2 と Case 1-3 はほぼ赤道対称な循 環パターンを示し,循環強度は非常に弱い(図 4c.d). この結果から春分・秋分において赤道非対 称な循環を作り出すもっとも効果的な要因は火星 の地形であると考えられる.

地形は東西平均成分と東西平均成分からのずれ にわけることができる.赤道非対称循環を作る上 でこれら2つの成分の効果を調べるために、さら に2つの数値実験を行った.2つの実験ともに、 季節変化、地面アルベドの空間変化、そして地面 熱慣性の空間変化を含まない.2 つの実験の条件 を表 2 に示す. Case 2-1 では地形の東西平均成分 のみを含み、Case 2-2 では地形の東西平均成分か らのずれのみを含む.

図 5a,b にそれぞれ Case 2-1, 2-2 の結果を示す. Case 2-1 では赤道に対し非対称な循環が形成され るが、Case 2-2 ではほぼ赤道対称な循環が形成さ れている.この結果から、地形の東西平均成分が 春分・秋分における赤道非対称循環を作る上で支 配的な要因であると結論される.

6. 赤道非対称循環の生成メカニ ズム

5節で、春分・秋分の赤道非対称な子午面循環 は地形の東西平均成分によって形成されることを 数値実験により明らかにした.この節ではそのメ カニズムについて議論する.

地面付近の子午面循環のメカニズムを考察する ためには、子午面循環の熱バランスの理解が必要 である.赤道非対称な循環が存在する高度約20km 以下の子午面循環の熱バランスを調べた結果、次

のことが分かった(ここでは図示せず,結果のみを 述べる).地面から高度約 20 km までは対流調節と して表現された直接熱対流が卓越する領域となっ ている.この直接熱対流は地面からの顕熱と熱放 射によって駆動されている.そして,直接熱対流 による混合過程はさらに大規模な循環を駆動する. このことから,地面温度分布が高度約 20 km 以下 に存在する赤道非対称な循環を作り出す上で重要 な要素となっていると考えられる.

図6は表2に示した Case 2-1 における時間・東 西平均した地面温度である.北半球と南半球とで 地面高度は大きく違うにも関わらず地面温度はほ ほ赤道対称となっていることがわかる.火星では 薄い大気のために温室効果が効きにくいので,極 域以外では地面温度の決定には日射の寄与が最も 大きい.日射の分布は赤道対称であるため地面温 度も赤道対称となる.

地表付近の大気の主要な加熱源は地表からの赤

外放射と顕熱なので、地表気温の緯度分布は地面 温度のそれと同じ対称性を持つ傾向にある.しか し、南北半球間では地表面高度差に対応して地表 面気圧が異なるので、この気圧差を補正した上で 南北半球間の温度を比較する必要がある.ここで、 以下のように定義される温位 θを用いる.

$$\theta = T\left(\frac{p_o}{p}\right)^{\frac{R}{C_p}}$$

T は温度, pa は平均的な地表面気圧, p は気圧, R は気体定数, C_p は定圧比熱である. 温位は断熱 過程を仮定して、ある気圧における温度を平均的 な地表面気圧における温度に換算した値であり, この温位を用いることで南北半球間の地表面気圧 差を考慮して温度を比較することができる. 地表 付近の温位を考えてみると、南北半球間で地表付 近の温度はほぼ同じなので、地表面高度の高い南 半球の温位の方が地表面高度の低い北半球のそれ よりも大きくなる. 高度約 20 km までの大気中に おいては、地表から供給された大気の熱エネルギ ーは、モデル中で対流調節として表現されている 直接熱対流によって鉛直に輸送されている.鉛直 温度勾配が断熱減率であるとすると温位の鉛直勾 配は零であり、地表付近の南北温位差は上空にお いても存在する。この地表面高度差に対応した温 位差が赤道に対する非対称循環を作り出している のである.

図7 Case 2-1における、地面から約1hPa気圧面(高度約20kmに相当)までの時間・東西平均した(a)対流調節による加熱率 (K/day)と(b)大気安定度(s⁻²)の子午面分布.

火星大気子午面循環への地形効果/高橋

上記のメカニズムは東西平均した温度と温位の 分布を調べることによって確かめることができる. ここでは図は示さないが, Case 2-1 の結果におい て,実際に30°Sと30°Nの地表付近の温度を調 べてみると,差はほとんどない.しかし,地表付 近の温位は30°Sの方が30°Nよりも約10K程度 高くなっている.

7.赤道非対称循環に伴う効果

本節では、これまでに述べてきた赤道非対称循 環に伴う効果として対流活動の南北非対称と、赤 道非対称循環によるダスト巻き上げ効果について 述べる.

対流活動の南北非対称は、対流調節による加熱 率と安定度の分布を調べることによって確かめる ことができる.図 7a,b はそれぞれ Case 2-1 におけ る地面から 1 hPa 気圧面(高度約 20 km に相当)ま での時間・東西平均した対流調節による加熱率と 安定度(浮力周波数の二乗)を示す.対流調節によ る加熱の中心は赤道上ではなく、南半球 20°S 付 近の上にある、南半球における対流加熱領域の鉛 直方向の広がりは北半球のそれよりも大きい. こ のことは南半球の対流の活動が北半球のそれより も活発であることを示している. 大気安定度の分 布は対流加熱率の分布と整合的である. 低緯度の 南北半球間のそれぞれの高度で大気安定度を比べ ると、北半球の安定度の方が南半球におけるそれ よりも大きい(図 7b). これは、南半球の対流活動 の方が北半球のそれよりも活発であることに対応 している.赤道非対称な循環は、南半球での上昇 流に伴う断熱膨張によって南半球の安定度を小さ くするとともに、下降流に伴う断熱圧縮によって 北半球の安定度を大きくする. 北半球では、大気 安定度が大きくなった結果として、対流活動は抑 制されるために南北半球間で対流活動に差が生じ

る.

上に述べたように、本研究で示した春分・秋分 時の赤道非対称循環を形成する場には、対流活動 の南北非対称が存在する.さらに赤道非対称循環 に伴う大規模場の風は、南半球の大気下層に水平 収束場を形成する傾向にある.これらの要因は、 ともに南半球においてダストの巻き上げをより容 易にする方向に働くと考えられる.過去の研究か らは、ダストの活動度の南北非対称が指摘されて いるが[10,11]、これは日射量が南半球と北半球で 違うことだけでなく、火星地形の非対称によって も生じている可能性がある.

参考文献

- Smith, D. E. et al., 1999: Science, 284, 1495-1503.
- [2] Zurek, R. W. et al., 1992: in Mars, 835-933.
- [3] Wilson, R. J., and K. Hamilton, 1996: J. Atomos. Sci., 53, 1290-1326.
- [4] Levy, E. II et al., 1982: J. Geophy. Res., 87, 3061-3080.
- [5] Pollack, J. B. et al., 1981: J. Atomos. Sci., 38, 3-29.
- [6] Pollack, J. B. et al., 1990: J. Geophy. Res., 95, 1447-1473.
- [7] Hinson, D. P. et al., 1999: J. Geophy. Res., 104, 26997-27012.
- [8] Conrath, B. J. et al., 2000: J. Geophy. Res., 105, 9509--9519.
- [9] Haberle, R. M. et al., 1993: J. Geophy. Res., 98, 3093-3123.
- [10] Martin, L. J., and R. W. Zurek, 1993: J. Geophy. Res., 98, 3221-3246.
- [11] Santee, M., and D. Crisp, 1993: J. Geophy. Res., 98, 3261--3279.