102

特集「惑星大気」 地球型惑星の大気循環に 大気微量成分の観測から迫る

1. はじめに

金星も火星も地球と同様に広大な大地と空を従 えた表層環境を持つ.この領域は地球において生 命圏であるため特に馴染みが深く,まずこの領域 を深く理解したいと欲するのは至極当然である. 本稿で扱う大気循環は表層環境の一側面である.

大気循環が,光化学工場である上層大気まで 様々な原料物質を運び上げ,生成物を全球にばら まく.あとの例からもわかるように,微量気体や エアロソルや雲の分布は大気循環に大きな影響を 受ける.その結果,アルベド,温室効果,固体惑 星とやりとりされる物質,宇宙空間に散逸してい く大気成分など,表層環境全体の長期的な変化を 支配する多くの要因が大気循環に左右される.大 気循環の探求は気象力学的興味からのみなされる ものではない.また、大気循環を含む大気内部の 物理を正しく理解できれば,精密な組成データ (同位体比も含む)を得やすい大気という部分を詳 しく調べることによって(大気の境界条件を与え る)惑星全体の成り立ちに迫る,いうことも可能 になる.

大気循環は、まずは雲や塵が描く複雑で繊細か つ壮大な模様として捉えられる.ただ眺めている だけでも楽しいが、ここでは、この混沌とした流 れの結果として大気は平均的にはどのように循環 しているのだろうかと考える.ここでいう平均的 な循環とは、空気塊に印をつけてその動きを長時

1 字宙科学研究所

間追跡して得られるパターンに相当するラグラン ジュ的平均循環であり、風速場の単純な平均であ るオイラー的平均風速とは一般には異なる(教科 書 [1, 2, 3] を参照). 地球, 金星, 火星の大気 循環は安定した大きな東西風成分を持っていて、 この東西風成分による循環については限られた風 速の測定値からでも推定できる。ところが子午面 循環(南北および鉛直成分)は多くの場合様々な 大気擾乱の寄与を足し合わせた僅かな残差として 現れてくる小さな量であり、そのような循環を風 速データから直接求めるには多数の観測点での長 期にわたる測定が必要である、地球以外の惑星で はそのようなアプローチはまず不可能だし、地球 でさえ成層圏以上ではデータが限られるため容易 ではない、しかし手段がないわけではない、平均 的な循環を推し量るには、全球的な分布が局所的 な化学よりも輸送に大きく支配されるような大気 微量成分に注目するという方法がある.本稿では、 大気微量成分の観測から地球、金星、火星の大気 循環について何がわかるか概観する.

2. 地球

地球においては、大気微量成分の観測によって 成層圏(高度10-50km)の子午面循環が解明されて きた.成層圏の基本的な風系は夏半球で東風、冬 半球で西風、春や秋には両半球とも西風であり、 大気は東西方向には比較的よく均されていると考 えられている.子午面循環は,まず水蒸気の分布 から推定された[3].成層圏での水蒸気混合比は 地上のそれに比べると数百分の一に乾燥しており, 露点温度に換算すると対流圏界面付近の気圧条件 では190K程度に対応する.このような低温は赤道 域の対流圏界面付近にのみ見られることから, 1949年にBrewerは成層圏の空気塊は赤道域の圏界 面を通った経験があると考えた.対流圏大気の成 層圏への侵入口は赤道にあり、ここで水蒸気が凝 結して重力沈降して除かれた("freeze dry"と称さ れる)乾燥した気塊が成層圏の中を中高緯度まで 輸送されるというわけである.

オゾンの分布も同様の子午面循環を示唆する [4]. 高度25-40kmの中・上部成層圏ではオゾン混 合比は低緯度から極に向かって緯度とともに小さ くなる、この高度領域ではオゾンが光化学反応で 壊れる時定数は数日程度と短く、オゾン密度は主 に光化学反応によってコントロールされることに なるので、このような分布は太陽紫外線量が多い 低緯度でオゾンの生成量が大きいためと考えられ る.ところが高度10-20kmの下部成層圏では事情が 異なり、低緯度よりも高緯度でオゾン混合比が大 きい.この高度領域ではオゾンが光化学反応で壊 れる時定数が1ヶ月から数ヶ月と長いので、オゾン 分布は大気運動による輸送に大きく支配される. このことから1956年にDobsonは、低緯度の比較的 高度の高いところで作られたオゾンが高緯度の下 部成層圏に運ばれていると考えた.

赤道域から両半球に成層圏内を循環の道筋が伸び ていく様子は、メタンや一酸化二窒素といった対流 圏に起源を持つ大気成分の分布から読みとれる [6]. これらの観測によって子午面循環の構造の季節変化 も明らかになった.エアロソルの分布からは、循環 の構造がQBO (quasi-biennial oscillation:赤道域の下 部成層圏の風系が約2年の周期で変化する)に伴っ て変化する様子も見い出された [7]. 最近,赤道域で対流圏界面から中部成層圏に気 塊が上昇していく様子が衛星からの水蒸気観測に よって鮮やかに捉えられた [8].赤道域の下部成 層圏での水蒸気量の時間-高度断面図を見ると,対 流圏界面付近の水蒸気変動のシグナルが上方に約 0.3mm/sの速さで伝わり,2年近くかかって高度25-30kmまで到達している.このことは、赤道域の圏 界面を通って成層圏に流入した大気が子午面循環 で上方に運ばれていることを示唆する.発見者ら はこの現象を"大気のテーブレコーダー"と呼ぶ. レコードヘッドにあたる圏界面において水蒸気濃 度を"録音"された気塊が子午面循環に伴ってテー プのように送り出されていくというイメージであ る.この観測によって季節やQBOに伴う上昇速度 の変動も明らかになった.

対流圏でのオゾンや水蒸気の観測からは、中高 緯度対流圏界面付近のジェット気流の南北蛇行に 伴って気圧の谷の近くで成層圏起源の気塊が中緯 度の上部対流圏に沈降する,tropopause folding(圏 界面の折り重なり)と呼ばれる現象がしばしば見 つかる [4,9].成層圏起源の気塊はオゾン濃度が 高く乾燥しているという特徴があるのでそれと知 れる.この現象は、赤道域での上昇で始まった成 層圏循環の終着点のひとつとして,また対流圏オ ゾンの起源の一つとして,重要と考えられている.

以上のような循環の結果,成層圏の大気は約2年 で入れ替わる.大気の持つ絶対角運動量は低緯度 ほど大きいので,このような循環が存在するとい うことは,低緯度から流れ込む角運動量が何らか のメカニズムで散逸させられているということで ある.プラネタリー波や大気重力波などの大気波 動がこの角運動量散逸を担うと考えられていて, 成層圏循環は"波が駆動する循環"などと称される (図1).

NII-Electronic Library Service

104

3. 金星

金星は主成分が二酸化炭素の分厚い大気で覆わ れており、地表面付近では気圧は92bar、気温は 735Kに達する.高温高圧下での熱化学反応が卓越 するであろう下層大気から光化学反応が重要な上 層大気までが連続的につながっている.高度45-70kmに硫酸エアロソルの雲層があり、雲頂付近で は数10m/sの東風が吹いている(赤道域では約4日 で惑星を一周する、いわゆる4日循環).風速は雲 頂付近で最大であり、地表面付近では数m/s以下で ある.自転軸の傾きも軌道の離心率も小さいので 季節変動は小さいと思われる.

探査の初期から知られている子午面循環は,紫 外域でのアルベドの模様(二酸化硫黄などの紫外 吸収物質の濃度むらによるとされる)の動きから 推定された,雲頂高度65-70kmにおける数m/s程度 の極向きの循環である[12].近年,ガリレオ探査 機がフライバイの際に近赤外域の撮像で雲層下部 の高度50km付近での雲の動きを観察し,この高度 においても同様の極向き循環を確認した[13].こ のことは,雲層付近の極向き循環を補償する赤道

図1. 成層圏-対流圏間の物質交換の力学的側面. 太線は対流 圏界面, 細線は等温位面(単位はKelvin)を示す. 太い破線 矢印は大気波動が駆動する残差平均子午面循環を表す. (文 献[11]より)

向き循環は雲層よりも下に存在することを意味す る. ガリレオ探査機はさらに近赤外域の分光スペ クトルから, 雲の下の高度30-50kmにおいて一酸 化炭素の混合比が高緯度ほど大きいことも見い出 した [14]. これは, 雲層より上の上層大気で二酸 化炭素が光解離してできた一酸化炭素が高緯度に おいて子午面循環によって雲層の下に運ばれるた めと解釈されている.

雲粒(硫酸エアロソル)の材料となる硫酸蒸気 の分布がPioneer Venusの電磁波掩蔽観測によって 調べられていて,それによると硫酸蒸気は高度35-50kmに存在し,その濃度は高緯度に比べて低緯度 で著しく高くなっている [15].硫酸蒸気層の高度 範囲については,上方では凝結によって,下方で は熱分解による消滅で制限されていると考えられ ている.一方,緯度分布についてはまだ一般に受 け入れられている説明がないが,雲層直下に赤道 向き循環が存在するという仮定のもとに,東京大 学のはしもとじょーじと筆者が共同で以下のよう な金星大気中の硫酸の循環についての仮説を提出 している(図2,3,4).まず,低緯度の雲頂付近 で光化学反応によって作られた硫酸蒸気は凝結し

図2. 雲粒(硫酸エアロソル)の質量密度分布の計算結果. 高度47-48kmに雲層の底がある.低緯度と高緯度において特 に厚い雲が生じている.前者は子午面循環の上昇流で持ち上 げられた硫酸蒸気が凝結するため、後者は雲頂付近で光化学 的に作られた雪粒が極向きの子午面循環によって高緯度に運 ばれるためである.(はしもとじょーじ氏との共同研究 [16] より)

て雲粒となる、これらの粒子は小さいため重力に よって沈降するよりも早く子午面循環によって高 緯度に運ばれていく. 高緯度で子午面循環の方向 が下向きに変わるのに伴って雲粒も下向きに運ば れ、高緯度に鉛直方向に比較的一様な厚い雲を形 成する. 雲粒は高度47km付近に達すると温度の上 昇のために蒸発する.ここで発生した硫酸蒸気は さらに子午面循環に乗って運ばれていく. 雲層よ り下では高温のため硫酸蒸気の一部は熱分解する が、分解しなかった硫酸蒸気は赤道向きの子午面 循環によって低緯度に運ばれる. 雲層の下を低緯 度まで輸送された硫酸蒸気は子午面循環の上昇流 によって持ち上げられて凝結する. ここで凝結す る雲粒は比較的粒径が大きく、重力によって効果 的に沈降するため、凝結が起こると凝結していな かった場合に比べて硫酸の上向き輸送量が減少す る。その結果、低緯度の雲底付近では硫酸の子午 面循環が滞り、硫酸蒸気の濃集が起こる.この仮 説では硫酸蒸気の分布だけでなく、雲層の厚さの 緯度依存性についても中緯度で相対的に雲が薄く なるという観測[17]と整合的な雲の分布が得ら れることが数値実験によって確認されている(図

図3.硫酸蒸気分布の計算結果.低緯度の雲底付近に濃集している.(はしもとじょーじ氏との共同研究[16]より)

2). これらのことから,我々が仮定したような雲 層直下の赤道向き循環の存在はもっともらしいと 言えるだろう.

地表面近くの大気の循環は謎に包まれている. 地表面付近の風向は赤道向きであるらしいことが マゼラン探査機が観測した地表面の風痕から示唆 されているが [18]、確かな証拠とは言い難い、上 層の大気循環との関わりや循環速度などは一切わ からない. Pioneer Venusの観測によると雲より上 での二酸化硫黄の濃度が数年スケールで大きく変 化しており、これを火山活動と結び付ける意見が ある [19]. もしそうであればこの観測によって地 表面付近と上層大気とを結ぶ循環の時定数につい て何らかの制約を課せられるが、そもそも雲の上 の二酸化硫黄濃度が雲の下に比べて異様に低い理 由がわかっておらず、今のところ解釈に困る.下 層から上層まで循環がつながっていれば下降流の 領域は上層大気の組成を反映するだろうから、下 層大気組成の全球的な分布がわかれば循環を知る 手がかりになる、数年前に近赤外域の分光スペク トルから下層大気中の水蒸気、二酸化硫黄、硫化 カルボニル、一酸化炭素、メタン、塩化水素、フ

図4. 金星大気における硫酸循環の新しい描像. 影をつけた 部分は雲層を表す. 雲頂付近で光化学的に作られた硫酸は子 午面循環によって高緯度から雲層の下に運ばれる. 低緯度の 雲底近くでは子午面循環の上昇流に抗して硫酸液滴が重力沈 降するため、そこで硫酸の循環が滞り、硫酸蒸気が濃集する. (はしもとじょーじ氏との共同研究 [16] より) ッ化水素などの濃度がわかることが見い出され, 精力的に地球から観測が行なわれているが[20], 精度が悪く水平分布もよくわからない.このよう な分光観測を金星周回軌道上で行えば,表層環境 化学のみならず大気循環についても大きく理解が 進むだろう.

4. 火星

かつては厚い大気のもとで表層に大量の液体の 水が存在したと考えられている火星だが、二酸化 炭素を主成分とする現在の火星大気は薄く、地表 気圧は0.6mbar程度しかない.大気圧は1火星年 (地球での約2年)の間に25%程度変動するが、こ れは二酸化炭素が冬極において凝結・蒸発を繰り 返すためと考えられている.よって厳密には火星 の大気循環は大気の中だけでは閉じない.平均的 な風系は地球成層圏と同様に概ね夏半球で東風、 冬半球で西風、春と秋には両半球とも西風と考え られている.

子午面循環は水蒸気量の変動から示唆されてい る [21]. Viking探査機の観測によると,北半球で 夏になって(極冠や地中からの蒸発で)水蒸気量 が増えた直後に,南半球でも水蒸気量が増え始め る.この時期にはまだ南半球には水蒸気の供給源 は無いと思われるので,この時期の南半球での水 蒸気量の増加は北半球から運び込まれた結果と考 えられる.数値シミュレーションでは夏半球から 冬半球へ赤道を越える子午面循環が存在すると予 想されていて [22],水蒸気量の変動はこの予想を 支持するように思われる.

数ミクロン以下の微小なダストが大気中に大量 に巻き上げられる"ダストストーム"がしばしば観 測されていて [23, 24],大気中に浮遊するそのよ うなダストが火星の気象に大きな影響を及ぼして いる.ほとんどのダストストームは局地的なものだ が、全球を覆いつくすような"大ダストストーム" が南半球の夏に1-2回起こる.大ダストストームは まず夏の南半球で始まり、やがて全球規模のスト ームに発展する.大ダストストームが冬の北半球 に広がる過程では南半球で巻き上げられたダスト が北半球に流れ込むことが重要と考えられていて、 このダストの流入も上述の赤道越えの子午面循環 によるのかもしれない.

北半球の春の終わり頃に氷晶雲が南緯10°から北 緯30°の低緯度帯をベルト状に取り巻いているのが ハッブル望遠鏡によって観測された [25]. このよ うな雲は上昇流で上空に運ばれた水蒸気が凝結す る結果として生じると考えるのが自然だろう.数 値シミュレーションではこの季節には子午面循環 の上昇流が北半球の亜熱帯に存在すると予想され ていて [22],観測された雲はこのような大規模な 上昇流によって作られたと考えてよさそうである.

宇宙科学研究所の火星探査機Planet-Bが1998年7 月に打ち上げられる. Planet-Bに搭載される可視光 カメラは、地形だけではなく大気中のダストや雲 も観測する予定である. Planet-Bは主に低緯度を周 回するので、低緯度帯での氷晶雲やダストの子午 面分布を大気の縁方向を見て観測することにより、 子午面循環の上昇流の構造や季節変動を明らかに することが期待される.

Planet-Bの主な科学目的は火星大気と太陽風の相 互作用を解明することであり、とくに火星大気が 太陽風に剥ぎとられていくメカニズムを明らかに することが期待されている。Phobos探査機の1989 年の観測によると、火星の夜側で酸素イオンが宇 宙空間に大量に流れ出しており、その流出量は現 在の火星大気中の二酸化炭素と酸素分子に含まれ る全酸素原子を約1億年で枯渇させるほどである という [26].このような時間スケールでは火星大 気循環は宇宙空間に向かって開いているといえる かもしれない. 火星では、下層大気まで達する紫外光のもとで 水酸ラジカルや過酸化水素などの酸化水素類を中 心とした活発な光化学反応が進行すると思われ、 光化学的に生成したオキシダントが土壌に大きな 影響を与えることも予想されているが、微量成分 の観測はほとんど行なわれていない [27].火星周 回軌道上からミリ波領域で大気の縁方向を見る分 光観測を行なえば、ダストにも邪魔されず、火星 大気中で重要と思われる化学成分のほとんどを高 空間分解能で全球的に観測できるだろう.それら の微量気体のデータからは、表層環境化学の理解 が進むのはもちろん、先に紹介した地球の成層圏 循環のように、大気循環の構造が様々な時間スケ ールで変動するさまが手にとるように見えてくる に違いない.

謝辞

東京大学の藤原正智氏,はしもとじょーじ氏,関 華奈子氏には,原稿を改訂する上で助言をいただ きました.記して感謝いたします.

参考文献

- [1] Andrews, D. G., Holton, J. R., and Loevy, C.
 B., 1987: *Middle Atmosphere Dynamics*, 150 pp., Academic, San Diego, Calif.
- [2] 松野太郎,島崎達夫,1981:「成層圏と中間圏の大気」(大気科学講座3),東京大学出版会.
- [3] 木田秀次, 1983:「高層の大気」(気象学のプロムナード16),東京堂出版.
- [4]小川利紘,1991:「大気の物理化学」(第 2期気象学のプロムナード12),東京堂出 版.
- [5] McPeters, R. D., Heath, D. F., and Bhartia, P.

K., 1984: Average ozone profiles for 1979 from the NIMBUS 7 SBUV instrument. J. Geophys. Res. 89, 5199-5214.

- [6] Jones, R. L., and Pyle, J. A., 1984: Observations of CH_4 and N_2O by the NIMBUS 7 SAMS: a comparizon with in situ data and two-dimensional numerical model calculations. J. Geophys. Res. 89, 5263-5279.
- [7] Trepte, C. R., and Hitchman, M. H., 1992: Tropical stratospheric circulation deduced from satellite aerosol data. *Nature* 355, 626-628.
- [8] Mote, P. W., et al., 1996: An atmospheric tape recorder: the imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res. 101, 3989-4006, 1996.
- [9] Johnson, W. B., and Viezee, W., 1981: Stratospheric ozone in the lower troposphere 1. presentation and interpretation of aircraft measurements. *Atmos. Environ.* 15, 1309-1323.
- [10] Ko, M. K. W., and Tung, K. K., 1985: A zonal mean model of stratospheric tracer transport in isentropic coordinates: numerical simulations for nitrous oxide and nitric acid. J. Geophys. Res. 90, 2313-2329.
- [11] Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L., 1995: Stratosphere-troposphere exchange. *Rev. Geophys.* 33, 403-439.
- [12] Rossow, W. B., Del Genio, A. D., and Eichler, T., 1990: Cloud-tracked winds from Pioneer Venus OCPP images. J. Atmos. Sci. 47, 2053-2084.
- [13] Carlson, R. W., et al., 1991: Galileo infrared

imaging spectroscopy measurements at Venus. *Science* **253**, 1541-1548.

- [14] Collard, A. D., et al., 1993: Latitudinal distributions of carbon monooxide in the deep atmosphere of Venus. *Planet. Space Sci.* 41, 487-494.
- [15] Jenkins, J. M., and Steffes, P. G., 1991: Results for 13-cm absorptivity and H₂SO₄ abundance profiles from the season 10 (1986) Pioneer Venus orbiter radio occultation experiment. *Icarus* 90, 129-138.
- [16] Imamura, T., and Hashimoto, G. L., 1998: Venus cloud formation in the meridional circulation. J. Geophys. Res., 投稿中.
- [17] Crisp, D., et al., 1991: Ground-based nearinfrared imaging observations of Venus during the Galileo encounter. Science 253, 1538-1541.
- [18] Greeley, R., Bender, K., and Thomas, P. E., 1995: Wind-related features and processes on Venus: summary of Magellan results. *Icarus* 115, 399-420.
- [19] Esposito, L. W., Sulfur dioxide: episodic injection shows evidence for active Venus volcanism. Science 223, 1072-1074.
- [20] Pollack, J. B., et al., 1993: Near-infrared light from Venus' nightside: a spectroscopic analysis. *Icarus* 103, 1-42.
- [21] Jakosky, B. M., and Haberle, R. M., 1992: The seasonal behavior of water on Mars. in Mars, edited by H. Kieffer et al., pp. 969-1016, Univ. of Ariz. Press, Tucson.
- [22] Haberle, R. M., et al., 1993: Mars atmospheric dynamics as simulated by the NASA Ames general circulation model 1. the zonal-mean circulation. J. Geophys. Res. 98, 3093-3123.

- [23] Kahn, R. A., Martin, T. Z., Zurek, R. W., and Lee, S. W., 1992: The Martian dust cycle. in *Mars*, edited by H. Kieffer et al., pp. 969-1016, Univ. of Ariz. Press, Tucson.
- [24] 森山茂,1993:「惑星の気象」(清水幹夫 編「惑星の科学」第2章),朝倉書店.
- [25] James, P. B., et al., 1996: Global imaging of Mars by Hubble space telescope during the 1995 opposition. J. Geophys. Res. 101, 18883-18890.
- [26] Lundin, R., et al., 1990: ASPERA/PHOBOS measurements of the ion outflow from the Martian ionosphere. *Geophys. Res. Lett.* 17, 873-876.
- [27] Barth, C. A., et al., 1992: Aeronomy of the current Martian atmosphere. in *Mars*, edited by H. Kieffer et al., pp. 1054-1089, Univ. of Ariz. Press, Tucson.