特集・月のテクトニクス/山路

月のテクトニクス: **構造地質学的アプローチ** 山路 教¹

1. 月の地質構造

惑星科学における構造地質学の任務は,惑星・ 衛星の固体表層部でおこる諸現象の博物学的記載 と,もう一つ,惑星進化の物理化学モデルにたい して制約情報を与えることである.固体部分の表 面は,流体圏ないし太陽系空間とリソスフェアの あいだの特殊な境界であるがゆえに,天体内外の プロセスに支配されて,特殊な地学現象が生起す る.その一環として,断層や褶曲といった地質構 造がつくられ,地質学的な情報として地殻に書き 込まれる.構造地質学は,そうした情報を扱う. さらに地質学の特質として,地質学的時間スケー ルという第4の次元での長いスパンの観測データを提供する.

テクトニックな変形によってできた構造,すな わち地質構造は,月にもたくさんみられる.海の (mare) ridgeとか,リンクルリッジ(wrinkle ridge)と よばれる構造である.ここでは単にリッジと呼ぶ. ただし,高地にもリッジは存在する[1].リッジの うち,高さにくらべて幅の広いものをアーチ(arch) ともいう(図1).またリル(rille)とよばれる谷地形の うち,蛇行せず直線的なもの,あるいは緩やかに 湾曲するものは,グラーベンと考えられている[2, 3].グラーベンは水平方向に地殻が引き裂かれた 痕跡である.

リッジにも色々な成因がある.たとえば熔岩流

図1. (a) 晴れの海の南東部の地形写真(Apollo 17 Metric photograph 0599). (b) 同地域のスケッチマップ(文献[24]の図に加筆). 杉型に 雁行するリッジを太い線でしめす. 海の表面は、ここでは3つの地質ユニットに区分されている. ユニットI, II, IIIの順に堆積した. 異な る地質ユニットが一連のリッジで変形していることに注意. グラーベン(linear rille)群はユニットIとIIを切るが、IIIを切らない.

「京都大学大学院理学研究科地球惑星科学専攻

が冷え固まらぬうちに、表面にできた皺であると か[4]、地下に貫入したマグマが地表を押し上げた ものであるとか[5,6].しかし大部分はテクトニッ クに変形したものらしい.その証拠として、クレ ータを変形させている例[7]、海だけでなく隣接す る高地まで変形させているもの[8]、時代の異なる 熔岩流が一連のリッジによって変形している例が 挙げられる(図1).またアポロ17号のレーダーサウ ンダー(radar sounder)は、リッジの下に断層を発見 している[9].レーダーサウンダーとは軌道上から 発射した電波によって、地下の構造を描きだす装 置である.例外はあるにせよ、リッジは水平方向 の短縮によって、表層にできた皺である.

2. どうやって歪み量を見積もるか

歪みを測るということは、変形前後の形態をく らべる作業である.つまり変形前の状態について、 何らかの仮定をおかねばならない.構造地質学で よく使うのが、地層面の形態である.地層はほぼ 水平に堆積するから、「水平にひろがる地層」とい うのが変形前の状態として妥当な仮定とみなせる. 月ではどうか.

伸縮量の推定法

月の場合も海の堆積物は、多くの場合ほぼ水平 に成層していることが知られている.それにはい ろいろな証拠がある.広域的には、アポロのサウ ンダーが地下の水平な反射面を明らかにしている [10,11].露頭規模で水平という証拠もある.ハド レー峡谷[12]やクレータ壁[2,fig.3.29]に露出する 水平な地層である.月でも海では初生的に、ほぼ 水平な地層が累重していたと考えられる.

はじめ水平だった地層が変形したとして,その 量をどうやって測ったらいいか.それには,2つ の方法がある.第1は,表面の地形の起伏からの 推定である、第2は地下の地質構造によるものだ.

海の表面はほぼ水平である.そこで,伸び縮み しない平らな膜を,どのように変形したら,リッ ジやグラーベンのある現在の海の表面地形に合わ せられるか試す.これが第1の方法である.その ためには,月面の起伏を精密に測定する必要があ る.代表的なリッジは,周囲より100~200 m程度 高くなっている.ゆえに上述の目的のためには,で きれば10 mくらいの標高差まで検出したい.これ までの月ミッションで得られた地形写真だと,そ れだけの精度で検討できる地域が非常に限られる. そこでSELENE計画でわれわれは,地形カメラに よるステレオ写真から,デジタル地形図をこの精 度で作成しようとしている.

変形量を見積もる第2の方法は、地下の地質構 造を正確に把握することによって達成される.こ れは油田探査からでてきた方法である.石油は背 斜構造など、特定の地質構造をえらんで溜まるか ら、探すには地下の地層の変形状態を精度良く把 握する必要があるわけだ.変形の結果としての形 態を、構造地質学では変形像という.もともと水 平だったという仮定が妥当ならば、地層群の変形 像を精密に決定することによって、変形量を見積 もることができる.地殻のバランス断面(balanced cross-section)を描くのが、その手段である.

バランス断面とは、ある条件のもとに精度良く 描かれた地質断面図である[13].地質断面図を描 くという場合、使えるデータは十分でないことが 多い.たとえば反射法地震探査では地震波速度構 造が未知であることが多いし、ボーリングや地表 の地質調査でも高々1次元的なデータの束しか得 られない.つまり地質断面図とは、観測から直接 描けるものと云うよりは、地下構造に関するモデ ルを図示したものでしかない.描かれた結果は方 法に依存する.

その方法として、地質学の初等教育ではバスク

特集・月のテクトニクス/山路

法を教えている.しかしバスク法は変形前後で体 積が保存しない.つまり幾何学的に不合理な断面 図になってしまう.現在の状態から,各層の厚さ や層に沿った長さを変えずに,変形プロセスを逆 にたどって元の水平な地層群に戻せるか,という ことが描かれた地質断面図が幾何学的に合理的か どうかという判断基準だ.これに合格したものを, バランスした地質断面,あるいはバランス断面と いう.反射法で地質断面図を正確に推定するには, 得られた反射面までの往復走時を,バランス条件 を課して距離に変換するわけだ.

バランス条件を課して、月表層の地質断面モデ ルをつくる.これができれば、元の状態と現在の 状態とをくらべて、どのくらい伸縮したか見積も ることができる.そのための材料が、レーザー高 度計とステレオ地形写真からつくるデジタル地形 図およびレーダサウンダーのデータである.分解 能は必ずしも良くないが、重力異常も役に立つ.第 1の地形の起伏による歪み測定法は、月面につい てだけバランス条件を使うともいえる.

水平ずれ断層帯における剪断歪みの推定

地質構造の雁行配列に注目することにより,横 ずれ断層の認定もできる. 雁行配列するリッジは, 個々のリッジの走行に直交する短縮をしめすだけ でなく,それらリッジ群全体の走行に沿って,水 平ずれが起こったことを示す. 変位量が大きけれ ば断層で切られ,ずらされた目印のあいだの距離 で,横ずれ断層の認定も変位量の見積もりもでき る.しかし月では,それほど大きく変位した水平 ずれ断層が無い.ゆえに地質構造の雁行配列に着 目して,水平ずれの認定と剪断歪みの計測を行う 必要がある.例えば晴れ海の南東部では,NW-SE ないしNNW-SSE走行で.「杉」の字のツクリの形 で配列した雁行リッジ群がみられる(図1). こうし た構造を杉型雁行配列という.リッジは上述のよ うに圧縮性の地質構造であるが、圧縮性地質構造 が杉型雁行するということは、全体として左横ズ レを伴う運動であったことがわかる.その逆で「ミ」 の字のように配列する場合は、右横ずれを示す.ま たグラーベンなどの伸長性地質構造だったら、解 釈は逆になる.ズレの量を見積もるには、変形量 の測定で示した、上述の地形の起伏による方法を 使う.

探査機SELENEの地形カメラとレーダサウンダ ーをつかえば、こうした手続きにより表面のみな らず、ある程度の深さまで、月の地殻歪みを3次 元的に定量化できるだろう.もちろん、岩石の物 性を適当に仮定すれば、応力場の3次元構造とし て捉えることが出来る.

3. どうやって変形年代を見積もる か

観測した歪みがいつ頃できたものかわかれば、変 形の定量化と併せて4次元的データが得られ、天 体の進化について強い制約を与えることができる. では変形年代をどうやって推定するか. 月でも地 質学の常套手段が使える.まずは地層累重の法則 と交叉則(cross-cutting rule)である. 後者は, 2つの 構造が交叉しているとき、切っている方が切られ ている方より新しい構造との主張である.図1には 晴れの海の南東部を覆う3枚の地質ユニットI, II, IIIがしめされているが、ユニットIIの下には1が、 IIIの下にはIIが横たわっていると地質学では想定 する、そのようになっていない場合が、堆積学的 アノマリーであって、何事も起こっていない堆積 盆に単純に地層が累重したのではなく、堆積の前 あるいは最中の地殻変動を考えるというのが、地 質学の論理である. つまり下の地層と上の地層が, 異なる分布パターンをしめすかどうかに注目する. この種のデータは、SELENEのサウンダーで豊富

に得られるだろう.

熔岩流がリッジに堰き止められている場所では, 熔岩流の年代からリッジの年齢の下限が決まる [14]. またクレータ年代も使える.実際Lucchittaた ちはグラーベンが切る岩体と,グラーベンを埋積 する岩体の年齢をクレータから推定し,月におけ るグラーベン形成が36±2億年前に終息したことを 示した[15]. リッジはさらに若い熔岩流をも変形さ せている.つまり伸張テクトニクスはインブリア 紀の半ばで終わり,それ以後は圧縮応力が月を支 配したらしい.

われわれはLUNAR-AおよびSELENE計画で高解 像度地形写真を手に入れる.そこで,ある程度の 拡がりのあるイジェクタブランケットが地質構造 を覆っていれば,ブランケットのクレータ密度か ら当該地質構造の形成年代の下限が決められる. リッジの形成は25億年くらい前までは盛んに起こ っていたらしいので[16],ブランケットによる年代 決定ができれば,相当に長い時間領域で変形史を 把握できるだろう.

地球の場合、リソスフェアの弱線は伸張・圧縮 応力場にさらされて、繰り返し変形集中帯になる. たとえばバルト盾状地とカナダのローレンシア盾 状地に挟まれた地帯は、先カンブリア代末にリフ ト帯となり両地塊が分裂し、いまの大西洋の一世 代前のイアペタス海が開いた.この海は古生代は じめに閉じてカレドニア造山帯をつくった.ほと んど同じ場所が古生代後半には伸張テクトニクス の場となり、白亜紀以降に再び開いて現在の大西 洋になった.こうした挙動は、リソスフェアの強 度に地域差があることに由来する.弱いところに 変形が集中するわけである.もっとローカルにみ ると、同じ断層が、あるときは正断層として、後 には逆断層として利用される、あるいはその逆の ことがよく起こる.

月で同じようなことが起こっていたとしても不

思議ではない. 多くのリッジは背斜構造ないし衝 上断層の地表表現と考えられるが、晴れの海など では基盤のリング構造に沿うリッジが多く[17], 既 存の弱線がリッジ形成の場として選ばれやすかっ たらしい[15]. 応力場が転換すると、同じ地域で異 なる性格のテクトニクスが働き得る. 断層が正断 層として動くと、断層面を境として、上盤側は下 盤側にくらべて相対的に沈降する、沈降した方に は地層がより厚く堆積する.同じ断層が逆断層に なると昇降のセンスが逆転し、地層が厚くたまる 側も逆になる.こうした現象を逆転テクトニクス とか盆地反転などとよぶ.これが起こると、上下 に重なる地層で異なる分布パターンをしめすこと になる.晴れの海を例として、朧気ながらこうし たことが見えている.アポロ17号のサウンダーで 推定した地質断面には、月面に達していない断層 がみられるが、その断層が活動をやめた後、海の 表面が波長の長い,ゆるやかな隆起を被ったらし V¹[18].

古い地層が被った変形と新しい地層の変形が異 なることは、要注意点である。そうしたことが多 くの地点で検出できれば、月の応力場変遷史につ いて、より細かい情報を引き出すことができるだ ろう.

4. 歪みから何がいえるか

変形を把握しやすいという理由で,月のテクト ニクスの研究は,海が主なフィールドになる.海 の研究からは,主として月の熱史について制約が 得られるだろう.

4.1 海の規模の熱史

海は隕石の巨大な衝突でできた盆地である.多 重リングクレータは、月ばかりではなく、いろい ろな天体に存在する巨大衝突の産物として普遍的 な地質構造である.多重リング構造は、クレータ ーのmodification stageにできることでは一致してい るが、transient cavityより外側のリングについては、 形成の時間スケールに曖昧さが残っている.内側 リング同様キャビティの崩壊で月面に津波状波動 が生じて、それが凍結したのだろうか.そうでは なく、キャビティの緩和過程で外側リングができ たにしても、衝突のあと長期間をかけて徐々にで きたのだろうか.この問題は、衝突時のターゲッ ト天体の温度構造に依存する[19].

外側リングの下に伏在する断層が、長い期間の あいだに徐々に変位したのなら、レーダサウンダ ーでその証拠が得られるかもしれない. その場合 も、海の地層が堆積するとき、水平になりたがる という性質が使える. リング状断層によって, 円 環状断層ブロックの表面はリングの外側に向かっ て傾く[20]. リングが徐々に出来るということは, 傾きも次第に大きくなるという事である. 断層変 位に伴って傾きつつある基盤のうえに地層が溜ま ると、基盤に近い層は基盤とともに大きく傾き、表 面に近い新しい層は、堆積以後の傾動分だけ傾く、 つまり下位から上位にむかって地層の傾きが単調 減少する.これが断層運動に伴う堆積作用の特徴 である.リング断層で落ち込んだ側には海の堆積 物が厚くたまる.そこで地層の厚さと傾きが、下 位から上位に向かってどのように変化するかサウ ンダーでみることにより,多重リングの形成時間 スケールを決定することが出来る.

多重リングクレーターは海の火成活動の場とな り,厚さ1kmを越える堆積物が堆積する[21],堆 積物の荷重によってリソスフェアは押し下げられ ている.リソスフェアはこの場合,弾性板と見な すことができる.するとリソスフェアの強度を表 現するのに,弾性板とみなしたときの有効厚が使 える.リソスフェアに荷重が作用すると,載荷点 を中心とした減衰振動のかたちで,リソスフェア

の波曲が生じる.その波長はリソスフェアの有効 弾性厚に比例する[22].押し曲げられて下に凸になった地域では,表層部に水平圧縮応力場が,上に 凸になった所では表層部に伸張応力場がはたらく. したがって,海の中央部では,表層部が水平圧縮 応力場となり,その周りに上に凸の地域ができ,そ こでは伸張応力がはたらく.

これらのことは、次のようなかたちで月の地質 構造に現れていると考えられている.リッジやグ ラーベンは海の中心に対して同心円状の走行を示 すものが多い事である.しかもリッジの外側にグ ラーベンが分布し、上述の応力場の分布と調和的 である.ゆえに圧縮から伸張にかわる半径をみれ ば、リソスフェアの有効弾性厚が推定できる[23, 24].こうした解析の結果、月の表側の海では西半 球が薄く、東半球が厚いという事になっている[25].

リソスフェアの有効弾性厚は熱史を制約するデ ータになる.地温勾配が高く、地下の岩石が柔ら かければ、有効弾性厚は薄い.地球の場合、海洋 リソスフェアは、加齢とともに有効弾性厚が増す. 海にくらべて遙かに長い地史を経て、複雑な物性 を持つはずの大陸リソスフェアでも、同様の効果 が認められるようになってきた[26].月でも、グラ ーベン形成期とそれにつづくリッジ形成期という ように、大雑把に時代を2分してみると、後のほ うが弾性厚が増大しており、インブリウム紀から エラトステネス紀にかけての冷却をしめしている [25].

月の海においてサウンダーのデータから地質断 面図を正確に描ければ,弾性厚の時代変化がさら に細かく追えるだろう.地球の場合,北米大西洋 岸のような静的大陸縁(プレートが沈み込んでない 大陸縁)では,そうした断面図からリソスフェアの 冷却過程がとらえられている[27].大陸奥地から運 ばれた堆積物は,大陸縁に厚くたまってゆく.つ まり冷却しつつあるリソスフェアの上で,堆積物

の荷重が次第に増大する.これは月の海において も起こったであろうプロセスである。荷重が作用 する場所ではリソスフェアが押し下げられるが、そ の隣ではむしろ若干隆起する. 堆積物は陸上には 溜まりにくいから、大雑把にいって海岸線を境と して沖に堆積,陸側が非堆積ということになる.沖 合で荷重が累積し、リソスフェアが押し下げられ ると、陸側が若干隆起する、沈降と隆起の境界線 をヒンジラインという.上述のように、荷重に対 するリソスフェアの応答波長は、冷却により次第 に長くなる、そのためリソスフェアの冷却で、ヒ ンジラインは次第に陸側へシフトし、堆積域が陸 側にひろがる. つまり徐々に海進が起こったよう に見えるわけだ.月の海でも堆積物はだいたい水 平に堆積するので、上述の荷重モデルが正しけれ ば、こうしたプロセスが月の海でもSELENEのサウ ンダーで見えるだろう. モデルを検証し、正しい となれば熱史を詳細に決めることができる.

4.2 月の地質構造から軌道進化を読む

まだ若い月は、地球の直ぐそばを回っていた.化 石や堆積物の縞縞から月の昔の公転半径を推定す ることができるが、地上では20億年を越えるデー タは極めて得にくい、そこで、月の地質構造から 推定できないか、ということになる.

地球からの潮汐で、月は楕円体に変形する、潮 汐作用は距離の3乗で減衰する。ゆえに時代ととも に、月は楕円体からしだいに球体に近づいてきた. それにともなってリソスフェアも楕円体殻から球 殻に近づいた. 地質構造から, それが読めるだろ うか. 月が半径 rの円軌道をまわり、月自体の形が 静水圧平衡で決まるとすると、月の形は三軸楕円 体で近似することができる.最大・中間・最小主 半径は、それぞれ、 $a = R(1+7MR^3/r^3), b = R(1-r^3)$ 2 $\overline{M}R^{3}/r^{3}$), $c = R(1-5\overline{M}R^{3}/r^{3})$ となる[28, p. 222]. ここで Rは月の平均半径, Mは地球/月の質量比の5/12倍 である.最大主半径は地球の方を向き、最小主半 径は自転軸に一致する、過去のある時点における 3つの主半径を添え字0で表し、それらの現在の値 を添え字1でしめすと- $(a_1-a_0)/a_0$, $(b_1-b_0)/b_0$, $(c_1-c_0)/c_0$ という比は、現在までの主半径の伸びにあたる、図 2は、これらの比が月の公転半径により、どのくら い変化するか示している.ちなみに、自転の減速 で月の扁平率が減少することが考えられるが、そ

図2. 月公転半径(r)の拡大にともなう潮汐楕円体の主半径の変化.現在の公転半径は、約38.4万km.

特集・月のテクトニクス/山路

れによる変形量は、潮汐によるものよりひと桁小 さい。

上述の3つの比は,鉛直方向の伸縮量である.リ ソスフェアは水平方向にも伸び縮みするだろう.楕 円体殻の具体的な変形場は,深さ方向のレオロジ ープロファイルや,水平方向の強度不均一に依存 して複雑である.月では実際,地域によって一桁 近い強度不均一が想定されている[25].月の軌道進 化の影響が,地質構造として見えるか考えるのが ここの目的なので,上述の主半径の比を水平方向 の歪みの大きさの大雑把な指標として使うことに する.すなわち月の公転半径がある値だったとき に,月面付近にできた岩体が現在,これらの比の 程度に歪んでいると見なす.

低温の岩石は10⁴くらい歪むと弾性限界を超える. 永久変形がのこると,地質構造となる.リッジや グラーベンの形で歪みが可視化されるということ だ.図2でみると公転半径が20万km位のときに固 化した岩体なら,現在10⁴程度の歪みに達している はずだ.そうした地域では,月の軌道進化が地質 構造として見える.軌道進化の理論的研究による と,月がその距離にあったのは,海の火成活動の 時期と重なっても不思議ではない[29,30].逆に言 うと,地質構造から軌道進化に対して制約を与え られる可能性がある.

潮汐楕円体が球に近づくというモデルを使って, Meloshはリソスフェアを厚さゼロの弾性膜として 各経緯度における歪みを計算し,さらにアンダー ソン理論[31]によって発生すべき断層を予言してい る[32].彼によると経度が0と180°あたりの低緯 度地方では南北走行の逆断層,両極付近で地球方 向と平行な正断層ができることになっている.他 の地域では,横ずれ断層である.図1でしめした 横ずれは,これと調和的である.嵐の大洋南西部 や湿りの海でも,潮汐モデルと調和的なリッジ群 がみられる.

しかし高緯度地方の代表として氷の海のリッジ をみると、現実にはかなり複雑な様相を呈してい ることがわかる.氷の海の西部には東西走行のリ ッジ群があり、東部にはリッジの多角形状ネット ワークがある[14]. また図1の北隣りには、図1bに しめした雁行リッジ群と似た走行でありながら、逆 センスのずれを示すリッジ群が存在する. メロシ ュのモデル[32]だけで説明できるほど、月の地質構 造は単純ではない.これらのことに対して、2通り の解釈が可能だ. 第1はアンダーソン理論が不十 分というものである.実際,天然の断層群を扱う のに、同理論は問題が多い[33].もっと現実的な断 層モデルを適用する必要がある.第2の解釈は,リ ッジの成因として複数のメカニズムを想定するこ とである.上述した海の荷重による変形など、テ クトニズムの原動力はいくつもある.

どんな変形メカニズムが、いつどの程度働いた か、これはやはり全球的に歪みを正確に把握・検 討する必要がある.SELENEの成果を期待したい.

謝辞

九州大学の並木則行博士には原稿を読んでいた だき,助言をいただいた.記して感謝します.

参考文献

- Mattingly, T. K. and El-Baz, F., 1973: Orbital observations of the lunar highlands on Apollo 16 and their interprettion. *Proc. 4th Lunar Sci. Conf.*, 49-56.
- [2] Wilhelms, D. E., 1987: The geologic history of the Moon. U. S. Geol. Surv. Prof. Pap. 1348, 1-302.
- [3] Head, J. W., 1974: Morphology and structure of the Taurus-Littrow highlands (Apollo 17):

256

evidence for their origin and evolution. *The Moon* **9**, 355-395.

- [3] Bryan, W. B., 1973: Wrinkle-ridge as deformed surface crust on ponded mare lava. Proc. 4th Lunar Sci. Conf., 93-106.
- [4] Guest, J. E., 1971: Geology of the moon. in *The Earth and its satellite* (Guest, J. E., Ed.), David McKay Co, 120-148.
- [5] Lowman, P. D., Jr., 1972: The geologic evolution of the moon. J. Geol. 80, 125-166.
- [6] Howard, K. A. and Muehlberger, W. R., 1973: Lunar thrust faults in Taurus-Littrow region. NASA SP-330, 31-22 to 31-25.
- [7] Lucchitta, B. K., 1976: Mare ridges and related highland scarps-result of vertical tectonism?
 Proc. 7th Lunar Planet. Sci. Conf., 2761-2782.
- [8] Maxwell, T. A., El-Baz, F. and Ward, S. H., 1975: Distribution, morphology, and origin of ridges and arches in Mare Selenitatis. *Geol. Soc. Am. Bull.* 86, 1273-1278.
- [9] Peeples, W. J., Sill, W. R., May, T. W., Ward, S. H., Phillips, R. J., Jordan, R. L., Abbott, E. A. and Kilpatrick, T. J., 1978: Orbital radar evidence for lunar subsurface layering in Maria serenitatis and Crisium. J. Geophys. Res. 83, 3459-3470.
- [10] Sharpton, V. L. and Head, J. W., III, 1982: Stratigraphy and structural evolution of southern Mare Serenitatis: a reinterpretation based on Apollo lunar sounder experiment data. J. Geophys. Res. 87, 10982-10998.
- [11] Ryder, G., 1989: Mare basalts on the Apennine Front and the mare stratigraphy of the Apollo 15 landing site. *Proc. 19th Lunar Planet. Sci. Conf.*, 43-50.
- [12] シェリング, D. D., 1991: 前縁褶曲-衝上帯に

おけるバランス断面の作成.構造地質 37,75-87.

- [13] Whitford-Stark, J. L., 1990: The volcanotectonic evolution of Mare Frigoris. Proc. 20th Lunar Planet. Sci. Conf., 175-185.
- [14] Lucchitta, B. K.and Watkins, J. A., 1978: Age of graben systems on the moon. Proc. 9th Lunar Planet. Sci. Conf. 3, 3459--3472.
- Fagin, S. W., Worrall, D. M. and Muehlberger,
 W. R., 1978: Lunar mare ridge orientations: implications for lunar tectonic models. *Proc. 9th Lunar Planet. Sci. Conf.*, 3743-3779.
- [16] Maxwell, T. A., El-Baz, F. and Ward, S. H., 1975: Distribution, morphology, and origin of ridges and arches in Mare Selenitatis. *Geol. Soc. Am. Bull.* 86, 1273-1278.
- [17] Scott, D. H., Watkins, J. A. and Diaz, J. M., 1978: Regional deformation of mare surfaces. Proc. 9th Lunar Planet. Sci. Conf., 3527-3539.
- [18] Alexopoulos, J. S. and McKinnon, W. B., 1992: Multiringed impact craters on Venus: an overview from Arecibo and Venera images and initial magellan data. *Icarus* 100, 347-363.
- [19] Spudis, P. D., 1993: The geology of multi-ring impact basins. Cambridge Univ. Press, Cambridge, 263 pp.
- [20] Cooper, M. R. and Kovach, R. L., 1974: Lunar near-surface structure. *Rev. Geophys. Space Phys.* 12, 291-308.
- [21] Turcotte, D. L. and Scubert, G., 1982: Geodynamics. John Wiley and Sons, New York, 450 pp.
- [22] Melosh, H. J., 1978: The tectonics of mascon loading. Proc. 9th Lunar Planet. Sci. Conf., 3513-3525.
- [23] Solomon, S. C. and Head, J. W., 1979: Vertical

movement in mare basins: relation to mare emplacement, basin tectonics, and lunar thermal history. *J. Geophys. Res.* **84**, 1667-1682.

- [24] Solomon, S. C. and Head, J. W., 1980: Lunar mascon basins: lava filling, tectonics, and evolution of the lithosphere. *Rev. Geophys.* Space Phys. 18, 107-141.
- [25] Stewart, J. and Watts, A. B., 1997: Gravity anomalies and spatial variations of flexural rigidity of mountain ranges. J. Geophys. Res. 102, 5327-5352.
- [26] Watts, T., 1992. The formation of sedimentary basins, in Understanding the Earth (Brown, G. C., Hawkesworth, C. J. and Wilson, R. C. L., Eds.), Cambridge Univ. Press, Cambridge, 301-326.
- [27] Jeffreys, H., 1970: The Earth, 6th edition.Cambridge Univ. Press, Cambridge, 574 pp.
- [28] 安部正真・水谷 仁, 1994: 地球史における 1日の長さの変化. 科学 64, 495-503.
- [29] Ooe, M., Sasaki, H. and Kinoshita, H., 1989:
 Effects of the tidal dissipation on the Moon's orbit and the Earth's rotation. AGU Monograph 59, 51-57.
- [30] ショルツ, C. H., 1993: 【地震と断層の力学】. 古今書院, 506 pp.
- [31] Melosh, H. J., 1980: Tectonic patterns on a tidally distorted planet. *Icarus* 43, 334-337.
- [32] Reches, Z., 1983: Faulting of rocks in threedimensional strain fileds II. *Tectonophys.* 95, 133-156.